Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T17:31:14.725Z Has data issue: false hasContentIssue false

The Flora of the Insect Limestone (latest Eocene) from the Isle of Wight, southern England

Published online by Cambridge University Press:  28 May 2014

Peta Angela Hayes
Affiliation:
Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, SW7 5BD, UK. Email: [email protected]
Margaret Elizabeth Collinson
Affiliation:
Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, SW7 5BD, UK. Email: [email protected] Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK. Email: [email protected]

Abstract

Latest Eocene fossil plant remains occur in concentrations within blue-grey micrite known as Insect Limestone near the base of the Bembridge Marls Member (Bouldnor Formation, Solent Group), Isle of Wight, southern England. Some of the previously reported taxa (collections in the Natural History Museum, London) are not preserved within the Insect Limestone. These (e.g., all Arecaceae (palms)) are excluded from the floral list. New non-destructive techniques have yielded additional taxonomic information. Leaves previously assigned to Ficus and Fagus are now incertae sedis. Wetland elements are abundant, particularly Typha, but also Acrostichum, Azolla, Potamogeton, Sparganium and others. Non-wetland elements are rare. Trees and shrubs included representatives of Betulaceae, Caprifoliaceae, Juglandaceae, Lauraceae, Rhamnaceae (the sclerophyllous Zizyphus), other flowering plants and several genera of conifers. There are rare specimens of possible herbaceous plants and propagules with plumes or awns, the latter possibly an early fossil record of Clematis. The common plant remains were probably derived from vegetation near a freshwater body, sometimes with slight brackish influence, whilst rarer elements were probably blown in from a greater distance. There is little evidence of plant–insect interaction; one leaf with small galls, a stem containing an insect larva and a possible association between stratiomyid flies and Typha.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10. References

Akhmetiev, M., Walther, H. & Kvaček, Z. 2009. Mid-latitude Palaeogene floras of Eurasia bound to volcanic settings and palaeoclimatic events – experience obtained from the Far East of Russia (Sikhote-Alin') and Central Europe (Bohemian Massif). Acta Musei Nationalis Pragae, Series B – Historia Naturalis 65(3–4), 61129.Google Scholar
Angiosperm Phylogeny Group. 2003. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399436.10.1046/j.1095-8339.2003.t01-1-00158.xGoogle Scholar
Antropov, A. V., Belokobylskij, S. A., Compton, S. G., Dlussky, G. M., Khalaim, A. I., Kolyada, V. A., Kozlov, M. A., Perfilieva, K. S. & Rasnitsyn, A. P. 2014. The wasps, bees and ants (Insecta: Vespida=Hymenoptera) from the Insect Limestone (Late Eocene) of the Isle of Wight, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104(for 2013), 335446.10.1017/S1755691014000103Google Scholar
Becker, H. 1969. Fossil plants of the Tertiary Beaverhead Basins in southwestern Montana. Palaeontographica Abteilung B 127(1–6), 1142.Google Scholar
Braun, A. In Stizenberger, E. 1851. Uebersicht der Versteinerungen des Grossherzogthums Baden. Freiburg: J. Diernfellner. 144 pp.Google Scholar
Bremer, K., Bremer, B. & Thulin, M. 2003. Introduction to phylogeny and systematics of flowering plants. Symbolae Botanicae Upsalienses 33(2), 1102.Google Scholar
Chandler, M. E. J. 1923. The geological history of the genus Stratiotes: an account of the evolutionary changes which have occurred within the genus during the Tertiary and Quaternary times. Quarterly Journal of the Geological Society 79, 117–38, pls v–vi.10.1144/GSL.JGS.1923.079.01-04.09Google Scholar
Chandler, M. E. J. 1925. The Upper Eocene flora of Hordle, Hants. Part 1. Monograph of the Palaeontographical Society of London 77, 132, pls i–iv.10.1080/02693445.1925.12035595Google Scholar
Chandler, M. E. J. 1957. The Oligocene flora of the Bovey Tracey Lake Basin, Devonshire. Bulletin of the British Museum of Natural History (Geology) 3, 73123.Google Scholar
Chandler, M. E. J. 1961. Post-Ypresian plant remains from the Isle of Wight and the Selsey Peninsula, Sussex. Bulletin of the British Museum of Natural History (Geology) 5, 1541, pls 4–11.Google Scholar
Chandler, M. E. J. 1963. Revision of the Oligocene floras of the Isle of Wight. Bulletin of the British Museum of Natural History (Geology) 6, 323383, pls 27–35.Google Scholar
Chandler, M. E. J. 1964. The lower Tertiary floras of southern England. IV. A summary and survey of findings in the light of recent botanical observations. London: British Museum (Natural History). 151 pp, pls 1–4.Google Scholar
Collinson, M. E. 1980. Recent and Tertiary seeds of the Nymphaeaceae sensu lato with a revision of Brasenia ovula (Brong.) Reid & Chandler. Annals of Botany 46, 603–32.10.1093/oxfordjournals.aob.a085958Google Scholar
Collinson, M. E. 1982. A reassessment of fossil Potamogetoneae fruits with description of new material from Saudi Arabia. Tertiary Research 4, 83104.Google Scholar
Collinson, M. E. 1983. Palaeofloristic assemblages and palaeoecology of the Lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Botanical Journal of the Linnean Society 86, 177225.10.1111/j.1095-8339.1983.tb00725.xGoogle Scholar
Collinson, M. E. 1990. Vegetational change during the Palaeogene in the coastal wetlands of southern England. In Knobloch, E. & Kvaček, Z. (eds) Paleofloristic and Paleoclimatic Changes in the Cretaceous and Tertiary, 135–39. Prague: Czech Geological Survey.Google Scholar
Collinson, M. E. 1996. Plant macrofossils from the Bracklesham Group (Early & Middle Eocene), Bracklesham Bay, West Sussex, England: review and significance in the context of coeval British Tertiary floras. Tertiary Research 16, 175202.Google Scholar
Collinson, M. E. 2002. The ecology of Cainozoic ferns. Review of Palaeobotany and Palynology 119, 5168.10.1016/S0034-6667(01)00129-4Google Scholar
Collinson, M. E., Singer, R. L. & Hooker, J. J. 1993. Vegetation change in the latest Eocene of southern England. In Planderová, E., Konzálová, M., Kvaček, Z., Sitár, V., Snopková, P. & Suballyová, D. (eds). Paleofloristic and paleoclimatic changes during Cretaceous and Tertiary, 8187, pls XX–XXV. Bratislava: Geologický Ústav Dionýza Štúra. 219 pp, pls I–XXXVII.Google Scholar
Collinson, M. E., Manchester, S. R. & Wilde, V. 2012a. Fruits and seeds of the Middle Eocene Messel biota. Abhandlungen der Senckenberg Gesellschafte für Naturforschung 57X, 1249.Google Scholar
Collinson, M. E., Smith, S. Y., Manchester, S. R., Wilde, V., Howard, L. E., Robson, B. E., Ford, D. S. F., Marone, F., Fife, J. L. & Stampanoni, M. 2012b. The value of X-ray approaches in the study of the Messel fruit and seed flora. Palaeobiodiversity and Palaeoenvironments 92, 403–16.10.1007/s12549-012-0091-7Google Scholar
Collinson, M. E. & Cleal, C. J. 2001a. Early and early middle Eocene (Ypresian–Lutetian) palaeobotany of Great Britain. In Cleal, C. J., Thomas, B. A., Batten, D. J. & Collinson, M. E. (eds) Geological Conservation Review Series, Mesozoic and Tertiary Palaeobotany of Great Britain, 185226. Peterborough: Joint Nature Conservation Committee. 335 pp.Google Scholar
Collinson, M. E. & Cleal, C. J. 2001b. Late middle Eocene–early Oligocene (Bartonian-Rupelian) and Miocene palaeobotany of Great Britain. In Cleal, C. J., Thomas, B. A., Batten, D. J. & Collinson, M. E. (eds) Geological Conservation Review Series, Mesozoic and Tertiary Palaeobotany of Great Britain, 227–74. Peterborough: Joint Nature Conservation Committee. 335 pp.Google Scholar
Collinson, M. E. & Cleal, C. J. 2001c. The palaeobotany of the Palaeocene and Palaeocene–Eocene transitional strata in Great Britain. In Cleal, C. J., Thomas, B. A., Batten, D. J. & Collinson, M. E. (eds) Geological Conservation Review Series, Mesozoic and Tertiary Palaeobotany of Great Britain, 155–84. Peterborough: Joint Nature Conservation Committee. 335 pp.Google Scholar
Collinson, M. E. & Hooker, J. J. 2003. Paleogene vegetation of Eurasia: framework for mammalian faunas. Deinsea 10, 4184.Google Scholar
Collinson, M. E. & van Bergen, P. F. 2004. Evolution of angiosperm fruit and seed dispersal biology and ecophysiology: morphological, anatomical and chemical evidence from fossils. In Hemsley, A. R. & Poole, I. (eds) The evolution of plant physiology, 344–77. London: The Linnean Society.Google Scholar
Compton, S. G., Ball, A. D., Collinson, M. E., Hayes, P., Rasnitsyn, A.P. & Ross, A. J. 2010. Ancient fig wasps indicate at least 34 Myr of stasis in their mutualism with fig trees. Biology Letters 6, 838–42.10.1098/rsbl.2010.0389Google Scholar
Crabb, P. 2001. The use of polarised light in photography of macrofossils. Palaeontology 44 (4), 659–64.10.1111/1475-4983.00196Google Scholar
Crane, P. R. 1987. Abelia-like fruits from the Palaeogene of Scotland and North America. Tertiary Research 9, 2130.Google Scholar
DeVore, M. L. & Pigg, K. B. 2010. Floristic composition and comparison of middle Eocene to late Eocene and Oligocene floras in North America. Bulletin of Geosciences 85(1), 111–34.10.3140/bull.geosci.1135Google Scholar
Endress, M. E. & Bruyns, P. V. 2000. A revised classification of the Apocynaceae s.l. The Botanical Review 66, 156.10.1007/BF02857781Google Scholar
Farjon, A. 2001. World checklist and bibliography of conifers. Kew, London: Royal Botanic Gardens. 316 pp.Google Scholar
Fowler, K. 1975. Megaspores and massulae of Azolla prisca Reid and Chandler from the Oligocene of the Isle of Wight, southern England. Palaeontology 18, 483507.Google Scholar
Gale, A. S., Huggett, J. M., Pälike, H., Laurie, E., Hailwood, E. A. & Hardenbol, J. 2006. Correlation of Eocene–Oligocene marine and continental records: orbital cyclicity, magnetostratigraphy and sequence stratigraphy of the Solent Group, Isle of Wight, UK. Journal of the Geological Society, London 163, 401–15.10.1144/0016-764903-175Google Scholar
Gardner, J. S. 1883. The Eocene Flora, Volume 2, Part 1. Monograph of the Palaeontographical Society 174(part of Vol. 37), 160, pls i–ix. London: The Palaeontographical Society.Google Scholar
Gardner, J. S. 1884. The Eocene Flora, Volume 2, Part 2. Monograph of the Palaeontographical Society 180(part of Vol. 38), 6192, pls x–xx. London: The Palaeontographical Society.Google Scholar
Gardner, J. S. 1885. The Eocene Flora, Volume 2, Part 3. Monograph of the Palaeontographical Society 185(part of Vol. 39), 91159, pls xxi–xxvii. London: The Palaeontographical Society.Google Scholar
Gardner, J. S. 1886. On the fossil plants of the Tertiary and Secondary beds of the United Kingdom. Report of the British Association for the Advancement of Science 1885, 396404, pls i–iii.Google Scholar
Gardner, J. S. 1888. The higher Eocene beds of the Isle of Wight. Report of the British Association for the Advancement of Science 1887, 414–23, pls iii–v.Google Scholar
Geological Society of America. 1984. Rock-Color Chart. Boulder, Colorado: Geological Society of America.Google Scholar
Gregor, H. J. & Bogner, J. 1984. Fossile Araceen Mitteleuropas und ihre rezenten Vergleichsformen. Documenta Naturae 19, 112.Google Scholar
Grimes, S. T., Hooker, J. J., Collinson, M. E. & Mattey, D. P. 2005. Summer temperatures of late Eocene to early Oligocene freshwaters. Geology 33, 189–92.10.1130/G21019.1Google Scholar
Heer, O. 1856. Flora Tertiaria Helvetiae, die tertiäre flora der Schweiz, volume 2. Winterthur: J. Wurster & compagnie. 110 pp, pls LI–C.Google Scholar
Heer, O. 1859. Flora Tertiaria Helvetiae, die tertiäre flora der Schweiz, volume 3. Winterthur: J. Wurster & compagnie. 378pp, pls CI–CLVI.Google Scholar
Hooker, J. J., Collinson, M. E. & Sille, N. P. 2004. Eocene–Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. Journal of the Geological Society, London 161, 161–72.10.1144/0016-764903-091Google Scholar
Hooker, J. J., Collinson, M., Grimes, S., Sille, N. & Mattey, D. 2007. Discussion on the Eocene–Oligocene boundary in the UK. Journal, Vol. 163, 2006, pp. 401–415. Journal of the Geological Society, London 164, 685–88.10.1144/0016-76492006-098Google Scholar
Hooker, J. J., Grimes, S. T., Mattey, D. P., Collinson, M. E. & Sheldon, N. D. 2009. Refined correlation of the UK Late Eocene–Early Oligocene Solent Group and timing of its climate history. Geological Society of America Special Paper 452, 179–95.Google Scholar
Jähnichen, H., Friederick, W. L. & Takáč, M. 1984. Engelhardioid leaves and fruits from the European Tertiary, Part II. Tertiary Research 6, 109–34.Google Scholar
James, M. T. 1981. Stratiomyidae. In McAlpine, J. F., Peterson, B. V., Shewell, G. E., Teskey, H. J., Vockeroth, J. R. & Wood, D. M. (eds) Manual of Nearctic Diptera Volume 1. Research Branch Agriculture Canada, Monograph 27, 497511.Google Scholar
Jarzembowski, E. A. 1980. Fossil insects from the Bembridge Marls, Palaeogene of the Isle of Wight, southern England. Bulletin of the British Museum (Natural History) (Geology) 33, 237–93.Google Scholar
Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. 2002. Plant Systematics: A Phylogenetic Approach, Edition 2. Sunderland, Massachusetts: Sinauer.Google Scholar
Koch, B. E. & Friedrich, W. L. 1971. Früchte und Samen von Spirematospermum aus der miozänen Fasterholt-Flora in Dänemark. Palaeontographica Abteilung B 136, 146.Google Scholar
Kunzmann, L. 1999. Koniferen der Oberkreide und ihre Relikte im Tertiär Europas. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 45, 1191.Google Scholar
Kunzmann, L. & Walther, H. 2012. Early Oligocene plant taphocoenoses of the Haselbach megafloral complex and the reconstruction of palaeovegetation. Palaeobiodiversity and Palaeoenvironments 92(3), 295307.Google Scholar
Kvaček, Z. 1971. Supplementary notes on Doliostrobus Marion. Palaeontographica, Abteilung B 135(3–6), 115–26.Google Scholar
Kvaček, Z. 2002. Novelties on Doliostrobus (Doliostrobaceae), an extinct conifer genus of the European Palaeogene. Časopis Národního muzea, Řada přírodovedná, 171, 131–75.Google Scholar
Kvaček, Z. 2010. Forest flora and vegetation of the European early Palaeogene – a review. Bulletin of Geosciences 85(1), 6376.10.3140/bull.geosci.1146Google Scholar
Kvaček, Z. & Teodoridis, V. 2011. The Late Eocene flora of Kučlín near Bílina in North Bohemia revisited. Acta Musei Nationalis Pragae, Series B – Historia Naturalis 67(3–4), 83144.Google Scholar
Leilke, K., Manchester, S. & Meyer, H. 2012. Reconstructing the environment of the northern Rocky Mountains during the Eocene/Oligocene transition: constraints from the palaeobotany and geology of south-western Montana, USA. Acta Palaeobotanica 52(2), 317–58.Google Scholar
McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Hawksworth, D. L., Marhold, K., Nicolson, D. H., Prado, J., Silva, P. C., Skog, J. E., Wiersema, J. H. & Turland, N. J. (eds). 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress, Vienna, Austria, July 2005. Regnum Vegetabile 146. Ruggell, Liechtenstein: Gantner Verlag KG. 568 pp.Google Scholar
Mai, D. H. 1995. Tertiäre Vegetationsgeschichte Europas: Methoden Und Ergebnisse. Jena: Gustav Fischer Verlag. 691 pp.Google Scholar
Mai, D. H. & Walther, H. 1978. Die Floren der Haselbacher Serie im Weisselster-Becken (Bezirk Leipzig, DDR). Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 28, 1200, pls 1–102.Google Scholar
Mai, D. H. & Walther, H. 1985. Die obereozänen Floren des NW-Sachsen und des Bitterfelder Raumes. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 38, 1230.Google Scholar
Manchester, S. R. 1987. The fossil history of the Juglandaceae. Monographs in Systematic Botany from the Missouri Botanical Garden 21, 1137.Google Scholar
Manchester, S. R. 1999. Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanical Garden 86, 472522.Google Scholar
Manchester, S. R. & Donoghue, M. J. 1995. Winged fruits of Linnaeeae (Caprifoliaceae) in the Tertiary of Western North America: Diplodipelta gen. nov. International Journal of Plant Sciences 156, 709–22.10.1086/297293Google Scholar
Manchester, S. R. & Hably, L. 1997. Revision of “Abelia” fruits from the Paleogene of Hungary, Czech Republic and England. Review of Palaeobotany and Palynology 96, 231–40.10.1016/S0034-6667(96)00055-3Google Scholar
Meyer, H. W. & Manchester, S. R. 1997. The Oligocene Bridge Creek Flora of the John Day Formation, Oregon. University of California Publications Geological Sciences 141, 1195.Google Scholar
Read, R. W. & Hickey, L. J. 1972. A revised classification of fossil palm and palm-like leaves. Taxon 21, 129–37.Google Scholar
Reid, E. M. & Chandler, M. E. J. 1926. Catalogue of Cainozoic plants in the Department of Geology. Volume 1. The Bembridge flora. London: British Museum (Natural History). 206 pp.10.5962/bhl.title.110151Google Scholar
Reveal, J. L. & Hoogland, R. D. 1992. (1021–1028) Proposals to conserve eight family names of Spermatophyta. Taxon 41, 116121.10.2307/1222503Google Scholar
Rønsted, N., Weiblen, G. D., Cook, J. M., Salamin, N., Machado, C. A. & Savolainen, V. 2005. 60 million years of co-divergence in the fig-wasp symbiosis. Proceedings of the Royal Society B 272, 2593–99.Google Scholar
Saporta, G. de. 1886. Nouveaux documents relatifs à des fossiles végétaux et à des traces d'Invertébrés, associés dans les anciens terrains. Bulletin de la Société Géologique de France, 3rd series XIV, 407–30, pls xviii–xxii.Google Scholar
Sheldon, N. D., Mitchell, R. L., Collinson, M. E. & Hooker, J. J. 2009. Eocene–Oligocene transition paleoclimatic and paleoenvironmental record from the Isle of Wight (UK). Geological Society of America Special Paper 452, 249–59.Google Scholar
Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H. & Wolf, P. G. 2006. A classification for extant ferns. Taxon 55, 705–31.Google Scholar
Smith, S. Y., Collinson, M. E., Rudall, P. J. & Simpson, D. A. 2010. The Cretaceous and Paleogene fossil record of Poales: review and current research. In Seberg, O., Petersen, G., Barfod, A. S. & Davis, J. I. (eds) Diversity, phylogeny, and evolution in monocotyledons: Proceedings of the fourth international conference on the comparative biology of the monocotyledons and the fifth international symposium on grass systematics and evolution, 333–56. Aarhus University Press.Google Scholar
Stubbs, A. E. & Drake, M. 2001. British soldierflies and their allies. Reading, UK: British Entomological and Natural History Society. 512 pp.Google Scholar
Unger, F. 1850. Genera et species plantarum fossilium. Vindobonae. 627 pp.Google Scholar
Unger, F. 1851. Die fossile Flora von Sotzka. Part 2, 131–97, pls XXII–LXVIII.Google Scholar
Wilde, V. & Frankenhäuser, H. 1998. The Middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany) Review of Palaeobotany and Palynology 101, 728.Google Scholar
Xie, L., Wen, J. & Li, L.-Q. 2011. Phylogenetic analyses of Clematis (Ranunculaceae) based on sequences of nuclear ribosomal ITS and three plastid regions. Systematic Botany 36, 907–21.10.1600/036364411X604921Google Scholar