Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T23:25:30.528Z Has data issue: false hasContentIssue false

Dynamic biogeographic models and dinosaur origins

Published online by Cambridge University Press:  14 December 2018

Michael S. Y. LEE*
Affiliation:
Biological Sciences Building, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia. Email: [email protected] Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.
Matthew G. BARON
Affiliation:
Department of Earth Science, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. Department of Earth Sciences, Natural History Museum, London, Cromwell Road, London SW7 5BD, UK.
David B. NORMAN
Affiliation:
Department of Earth Science, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
Paul M. BARRETT
Affiliation:
Department of Earth Sciences, Natural History Museum, London, Cromwell Road, London SW7 5BD, UK.
*
*Corresponding author

Abstract

A comprehensive analysis of early dinosaur relationships raised the possibility that the group may have originated in Laurasia (Northern Hemisphere), rather than Gondwana (Southern Hemisphere) as often thought. However, that study focused solely on morphology and phylogenetic relationships and did not quantitatively evaluate this issue. Here, we investigate dinosaur origins using a novel Bayesian framework uniting tip-dated phylogenetics with dynamic, time-sliced biogeographic methods, which explicitly account for the age and locality of fossils and the changing interconnections of areas through time due to tectonic and eustatic change. Our analysis finds strong support for a Gondwanan origin of Dinosauria, with 99 % probability for South America (83 % for southern South America). Parsimony analysis gives concordant results. Inclusion of time-sliced biogeographic information affects ancestral state reconstructions (e.g., high connectivity between two regions increases uncertainty over which is the ancestral area) and influences tree topology (disfavouring uniting fossil taxa from localities that were widely separated during the relevant time slice). Our approach directly integrates plate tectonics with phylogenetics and divergence dating, and in doing so reaffirms southern South America as the most likely area for the geographic origin of Dinosauria.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Alekseyenko, A. V., Lee, C. & Suchard, M. A. 2008. Wagner and Dollo: a stochastic duet by composing two parsimonious solos. Systematic Biology 57, 772784.Google Scholar
Baron, M. G. 2018. The origin and early evolution of the Dinosauria. PhD Dissertation, University of Cambridge, UK. https://doi.org/10.17863/CAM.18898Google Scholar
Baron, M. G., Norman, D. B. & Barrett, P. M. 2017a. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543, 501506.Google Scholar
Baron, M. G., Norman, D. B. & Barrett, P. M. 2017b. Baron et al. Reply. Nature 551, E4E5.Google Scholar
Baron, M. G. & Williams, M. E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63, 129145.10.4202/app.00372.2017Google Scholar
Bernardi, M., Klein, H., Petti, F. M. & Ezcurra, M. D. 2015. The origin and early radiation of archosauriforms: integrating the skeletal and footprint record. PLoS ONE 10, e0128449.Google Scholar
Bielejec, F., Lemey, P., Baele, G., Rambaut, A. & Suchard, M. A. 2014. Inferring heterogeneous evolutionary processes through time: from sequence substitution to phylogeography. Systematic Biology 63, 493504.Google Scholar
Boyd, C. A. 2015. The systematic relationships and biogeographic history of ornithischian dinosaurs. PeerJ 3, e1523.Google Scholar
Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J. & Norell, M. A. 2010. The origin and early radiation of dinosaurs. Earth-Science Reviews 101, 68100.Google Scholar
Cabreira, S. F., Schultz, C. L., Bittencourt, J. & Langer, M. C. 2011. New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil. Naturwissenschaften 98, 10351040.Google Scholar
Cabreira, S. F., Kellner, A. W. A., Dias-da-Silva, S., da Silva, L. R., Bronzati, M., Marsola, J. C. d. A., Müller, R. T., Bittencourt, J. d. S., Batista, B. J. A., Raugust, T., Carrilho, R., Brodt, A. & Langer, M. C. 2016. A unique Late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Current Biology 26, 16.Google Scholar
Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 19691973.Google Scholar
Drummond, A. J. & Suchard, M. A. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biology 8, 114.Google Scholar
Ezcurra, M. D. 2010. A new early dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Argentina: a reassessment of dinosaur origin and phylogeny. Journal of Systematic Palaeontology 8, 371425.Google Scholar
Gavryushkina, A., Heath, T. A., Ksepka, D. T., Stadler, T., Welch, D. & Drummond, A. J. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systematic Biology 66, 5773.Google Scholar
Harrison, L. B. & Larsson, H. C. E. 2015. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Systematic Biology 64, 307324.Google Scholar
Hoyal Cuthill, J. F. 2015. The morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states? Interface Focus 5, 20150049.Google Scholar
Hunn, C. A. & Upchurch, P. 2001. The importance of time/space in diagnosing the causality of phylogenetic events: towards a ‘chronobiogeographical' paradigm? Systematic Biology 50, 391407.Google Scholar
Irmis, R. B., Nesbitt, S. J., Padian, K., Smith, N. D., Turner, A. H., Woody, D. & Downs, A. 2007. A Late Triassic dinosauromorph assemblage from New Mexico and the rise of dinosaurs. Science 317, 358361.10.1126/science.1143325Google Scholar
Kass, R. E. & Raftery, A. E. 1995. Bayes factors. Journal of the American Statistical Association 90, 773795.Google Scholar
King, B., Qiao, T., Lee, M. S. Y., Min, Z. & Long, J. A. 2017. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Systematic Biology 66, 499516.Google Scholar
King, B. & Lee, M. S. Y. 2015. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. Systematic Biology 64, 532544.Google Scholar
Ksepka, D. T., Fordyce, R. E., Ando, T. & Jones, C. M. 2012. New fossil penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. Journal of Vertebrate Paleontology 32, 235254.Google Scholar
Landis, M. J. 2016. Biogeographic dating of speciation times using paleogeographically informed processes. Systematic Biology 66, 128144.Google Scholar
Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & Novas, F. E. 2010. The origin and early evolution of dinosaurs. Biological Review 85, 55110.Google Scholar
Langer, M. C., Ezcurra, M. D., Rauhut, O. W. M., Benton, M. J., Knoll, F., McPhee, B. W., Novas, F. E., Pol, D. & Brusatte, S. L. 2017. Untangling the dinosaur family tree. Nature 551, E1–E3.Google Scholar
Lee, M. S. Y. & Palci, A. 2015. Morphological phylogenetics in the genomic age. Current Biology 25, R922–29.Google Scholar
Lemey, P., Rambaut, A. & Drummond, A. J. 2009. Bayesian phylogeography finds its roots. PLoS Computational Biology 5, e1000520.Google Scholar
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913925.Google Scholar
Maddison, W. P. & Maddison, D. R. 2017. Mesquite: a modular system for evolutionary analysis. Version 3.2 http://mesquiteproject.org.Google Scholar
Martinez, R. N., Sereno, P. C., Alcober, O. A., Columbi, C. E., Renne, P. R., Montanez, I. P. & Curre, B. S. 2011. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science 331, 206210.10.1126/science.1198467Google Scholar
Martinez, R. N. & Alcober, O. A. 2009. A basal sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the early evolution of Sauropodomorpha. PLoS ONE 4, e4397.Google Scholar
Matzke, N. J. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5, 242248.Google Scholar
Nesbitt, S. J., Smith, N. A., Irmis, R. B., Turner, A. H., Downs, A. & Norell, M. A. 2009. A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs. Science 326, 15301533.Google Scholar
Nesbitt, S. J., Barrett, P. M., Werning, S., Sidor, C. A. & Charig, A. J. 2013. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania. Biology Letters 9, 20120949.Google Scholar
Nesbitt, S. J., Butler, R. J., Ezcurra, M. D., Barrett, P. M., Stocker, M. R., Angielczyk, K. D., Smith, R. M. H., Sidor, C. A., Niedzwiedzki, G., Sennikov, A. G. & Charig, A. J. 2017. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484487.Google Scholar
Niedźwiedzki, G., Brusatte, S. L., Sulej, T. & Butler, R. J. 2014. Basal dinosauriform and theropod dinosaurs from the mid–late Norian (Late Triassic) of Poland: implications for Triassic dinosaur evolution and distribution. Palaeontology 57, 11211142.Google Scholar
Norman, D. B. 1998. On Asian ornithopods (Dinosauria: Ornithischia). 3. A new species of iguanodontid dinosaur. Zoological Journal of the Linnean Society 122, 291348.Google Scholar
Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. 2008. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581583.Google Scholar
O'Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, J., Pisani, D. & Donoghue, P. C. 2016. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters 12, 20160081.Google Scholar
Parry, L. A., Baron, M. G. & Vinther, J. 2017. Multiple optimality criteria support Ornithoscelida. Royal Society Open Science 4, 170833.Google Scholar
Poropat, S. F., Mannion, P. D., Upchurch, P., Hocknull, S. A., Kear, B. P., Kundrat, M., Tischler, T. R., Sloan, T., Sinapius, G. H. K., Elliott, J. A. & Elliott, D. A. 2016. New Australian sauropods shed light on cretaceous dinosaur palaeobiogeography. Scientific Reports 6, 34467.Google Scholar
Rambaut, A. 2016. Figtree v1.4.3. Available from http://tree.bio.ed.ac.uk/software/figtree.Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901904.Google Scholar
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, L. & Rasnitsyn, A. P. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61, 973999.Google Scholar
Rossie, J. B. & Seiffert, E. R. 2006. Continental paleobiogeography as phylogenetic evidence. In Lehman, S.M. & Fleagle, J. G. (eds) Primate biogeography. 469522. New York: Springer.Google Scholar
Rowe, T. B., Sues, H.-D. & Reisz, R. R. 2011. Dispersal and diversity in the earliest North American sauropodomorph dinosaurs, with a description of a new taxon. Proceedings of the Royal Society B: Biological Sciences 27, 10441053.Google Scholar
Sanders, K. L., Rasmussen, A. R., Mumpuni Elmberg, J., de Silva, A. Guinea, M., Lee, M. S. 2013. Recent rapid speciation and ecomorph divergence in Indo-Australian sea snakes. Molecular Ecology 22, 27422759.Google Scholar
Schaefer, H., Hechenleitner, P., Santos-Guerra, A., de Sequeira, M. M., Pennington, R. T., Kenicer, G. & Carine, M. A. 2012. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evolutionary Biology 12, 250.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284, 21372147.Google Scholar
Stadler, T. 2010. Sampling-through-time in birth-death trees. Journal of Theoretical Biology 267, 396404.Google Scholar
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J. & Rambaut, A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4, vey016.Google Scholar
Sues, H. D., Nesbitt, S. J., Berman, D. S. & Henrici, A. C. 2011. A late-surviving basal theropod dinosaur from the latest Triassic of North America. Proceedings of the Royal Society B: Biological Sciences 278, 34593464.Google Scholar
Swofford, D. L. 2003. PAUP*. phylogenetic analysis using parsimony (*and other methods). version 4. Sunderland, MA: Sinauer Associates.Google Scholar
Wright, A. M. & Hillis, D. M. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9, e109210.Google Scholar
Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M.-H. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60, 150160.Google Scholar
Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39, 306314.Google Scholar
Yates, A. M. 2003. A new species of the primitive dinosaur Thecodontosaurus (saurischia: Sauropodomorpha) and its implications for the systematics of early dinosaurs. Journal of Systematic Palaeontology 1, 142.Google Scholar
Supplementary material: File

Lee et al. supplementary material

Lee et al. supplementary material 1

Download Lee et al. supplementary material(File)
File 1.6 MB