Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T01:05:07.145Z Has data issue: false hasContentIssue false

Carboniferous dykes as monitors of post-Caledonian fluid events in West Connacht, Ireland

Published online by Cambridge University Press:  03 November 2011

Gawen R. T. Jenkin
Affiliation:
Isotope Geosciences Unit, Scottish Universities Research and Reactor Centre, Rankine Avenue, Scottish Enterprise Technology Park East Kilbride, Glasgow G75 0QF, UK
Paul Mohr
Affiliation:
Department of Geology, University College Galway, Galway, Ireland
John G. Mitchell
Affiliation:
Department of Physics, The University, Newcastle-upon-Tyne NE1 7RU, UK
Anthony E. Fallick
Affiliation:
Isotope Geosciences Unit, Scottish Universities Research and Reactor Centre, Rankine Avenue, Scottish Enterprise Technology Park East Kilbride, Glasgow G75 0QF, UK

Abstract

The causes of hydrothermal alteration in dolerite dykes intruding Caledonian rocks of W Connacht are investigated using stable isotope, water content and K–Ar data for whole rocks and mineral separates. Using an isochron approach the Logmór dyke in the north is re-dated to 308±4 Ma; previously determined older whole-rock ages reflect excess 40Ar. The ∼ 305 Ma age previously proposed for the Teach Dóite suite in the south is reinforced by a 305 Ma age on a pyroxene separate, although the severe resetting of most samples is emphasised by other pyroxene and plagioclase ages of ∼210 Ma. Pyroxene δ18O values for these Upper Carboniferous dykes are mostly 5·5 to 6·1%, indicating negligible crustal contamination. Logmór whole-rock samples have water contents of 1·7–2·1 wt.%, δ5D= 59 to –47‰ and δ18O = 9·4 to 9·6‰; plagioclase shows little mineralogical alteration but its δ18O is 9·7‰. Hydrothermal alteration involving a local formation or metamorphic water took place at high fluid/rock ratios and high temperature during cooling after intrusion, most probably in a thermally-driven convection system. Teach Dóite dykes have water contents of 2·0–4·2 wt.%. δD= –58 to –38‰ and δ18O = 3·6 to 9·2‰, and were mostly altered in two stages; hydration upon intrusion to ∼ 2 wt.% water by contemporaneous meteoric water at low fluid/rock ratios was followed by extensive chemical and isotopic alteration at ∼210 Ma (Upper Triassic) by surface waters. This latter event could also have caused the extensive alteration observed in the host rocks.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. N. & Zoback, M. D. 1979. In situ permeability and fracture distribution on the southern flank of the Costa Rica Rift. Galapagos Spreading Center. American Geophysical Union Transactions 60, 943.Google Scholar
Anderton, R., Bridges, P. H., Leeder, M. R. & Sellwood, B. W. 1979. A dynamic stratigraphy of the British Isles. London: Allen & Unwin.Google Scholar
Behr, H-J., Horn, E. E., Frentzel-Beyme, K. & Reutel, Chr. 1987. Fluid inclusion characteristics of the Variscan and post-Variscan mineralising fluids in the Federal Republic of Germany. Chemical Geology 61, 273–85.CrossRefGoogle Scholar
Berger, G. W. & York, D. 1981. Geothermometry from 40Ar/39Ar dating experiments. Geochimica Cosmochimica Acta 45, 795811.CrossRefGoogle Scholar
Böhlke, J. K. & Irwin, J. J. 1992. Brine history indicated by argon, krypton, chlorine, bromine and iodine analyses of fluid inclusions from the Mississippi Valley type lead-fluorite-barite deposits at Hansonburg, New Mexico. Earth & Planetary Science Letters 110, 5166.CrossRefGoogle Scholar
Brace, W. F. 1984. Permeability of crystalline rocks: new in situ measurements. Journal of Geophysical Research 89, 4327–30.CrossRefGoogle Scholar
Brown, G. C., Francis, E. H., Kennan, P. & Stillman, C. J. 1985. Caledonian igneous rocks of Britain and Ireland. In Harris, A. L. (ed.) The nature and timing of orogenic activity in the Caledonian rocks of the British Isles. Geological Society Memoirs 9, 115.Google Scholar
Burgess, R., Kelley, S. P., Parsons, I., Walker, F. D. L. & Worden, R. H. 1992. 40Ar39Ar analysis of perthite microtextures and fluid inclusions in alkali feldspars from the Klokken syenite, South Greenland. Earth & Planetary Science Letters 109, 147–67.CrossRefGoogle Scholar
Canals, A. & Cardellach, E. 1993. Strontium and sulphur isotope geochemistry of low temperature barite-fluorite veins of the Catalonian Coastal Ranges (NE Spain): a fluid mixing model and age constraints. Chemical Geology 104, 269–80.CrossRefGoogle Scholar
Chernosky, J. V. Jr, Berman, R. G. & Bryndzia, L. T. 1988. Stability, phase relations, and thermodynamic properties of chlorite and serpentine group minerals. In Bailey, S. W. (ed.) Hydrous phyllosilicates (exclusive of micas), 295346. Reviews in Mineralogy 19. Mineralogical Society of America.CrossRefGoogle Scholar
Chiba, H., Chacko, T., Clayton, R. N. & Goldsmith, J. R. 1989. Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite: Application to geothermometry. Geochimica Cosmochimica Acta 53, 2985–95.CrossRefGoogle Scholar
Clayton, R. N. & Mayeda, T. K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica Cosmochimica Acta 27, 4352.CrossRefGoogle Scholar
Delaney, P. T. 1987. Heat transfer during emplacement and cooling of mafic dykes. In Halls, H. C. & Fahrig, W. F. (eds) Mafic dyke swarms, 3146, Geological Association of Canada Special Paper 34.Google Scholar
Dewey, J. F. & McKerrow, W. S. 1963. An outline of the geomorphology of Murrisk and north west Galway. Geological Magazine 100, 260–75.CrossRefGoogle Scholar
Dyer, A. & Molyneux, A. 1968. The mobility of water in zeolites—I. Self diffusion of water in analcite. Journal of Inorganic Nuclear Chemistry 30, 829–37.CrossRefGoogle Scholar
Farver, J. R. 1989. Oxygen self-diffusion in diopside with application to cooling rate determinations. Earth & Planetary Science Letters 92, 386–96.CrossRefGoogle Scholar
Farver, J. R. & Giletti, B. J. 1985. Oxygen diffusion in amphiboles. Geochimica Cosmochimica Acta 49, 1403–11.CrossRefGoogle Scholar
Farver, J. R. & Giletti, B. J. 1989. Patterns and processes of oxygen isotope exchange in a fossil meteoric hydrothermal system, Cuillins Gabbro Complex, Isle of Skye, Scotland. Contributions to Mineralogy and Petrology 102, 2433.CrossRefGoogle Scholar
Faure, G. 1986. Principles of isotope geology, 2nd edn. New York: John Wiley and Sons.Google Scholar
Feely, M. & Madden, J. S. 1987. The spatial distribution of K, U, Th and surface heat production in the Galway granite, Connemara, Western Ireland. Irish Journal of Earth Science 8, 155–64.Google Scholar
Ferry, J. M. 1985. Hydrothermal alteration of Tertiary igneous rocks from the Isle of Skye, Northwest Scotland. I Gabbros. Contributions to Mineralogy and Petrology 91, 264–82.CrossRefGoogle Scholar
Fitzgerald, E., Feely, M., Johnson, J. D., Clayton, G., Fitzgerald, L. J. & Sevastopulo, G. D. 1994. The Variscan thermal history of west Clare, Ireland. Geological Magazine 131, 545–58.CrossRefGoogle Scholar
Frakes, L. A. 1979. Climates through geological time. Amsterdam: Elsevier.Google Scholar
Francis, E. H. 1991. Carboniferous-Permian igneous rocks. In Craig, G. Y. (ed.) Geology of Scotland, 2nd edn, 393420. Edinburgh: Scottish Academic Press.Google Scholar
Fuex, A. N. & Baker, D. R. 1973. Stable carbon isotopes in selected granitic, mafic, and ultramafic igneous rocks. Geochimica Cosmochimica Acta 37, 2509–21.CrossRefGoogle Scholar
Galindo, C., Tornos, F., Darbyshire, D. P. F. & Casquet, C. 1994. The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study. Chemical Geology (Isotope Geoscience) 112, 351–64.Google Scholar
Giletti, B. J. & Hess, K. C. 1988. Oxygen diffusion in magnetite. Earth & Planetary Science Letters 89, 115–22.CrossRefGoogle Scholar
Giletti, B. J., Semet, M. P. & Yund, R. A. 1978. Studies in diffusion—III. Oxygen in feldspars, an ion microprobe determination. Geochimica Cosmochimica Acta 42, 4557.CrossRefGoogle Scholar
Gleadow, A. J. W. 1978. Fission-track evidence for the evolution of rifted continental margins. US Geological Survey: Open File Report 78–701, 146–48.Google Scholar
Godfrey, J. D. 1962. The deuterium content of hydrous minerals from the east-central Sierra Nevada and Yosemite National Park. Geochimica Cosmochimica Acta 26, 1215–45.CrossRefGoogle Scholar
Graham, C. M. 1981. Experimental hydrogen isotope studies III: Diffusion of hydrogen in hydrous minerals, and stable isotope exchange in metamorphic rocks. Contributions to Mineralogy and Petrology 76, 216–28.CrossRefGoogle Scholar
Graham, C. M., Viglano, J. A. & Harmon, R. S. 1987. An experimental study of hydrogen isotope exchange between aluminous chlorite and water, and of hydrogen diffusion in chlorite. The American Mineralogist 72, 566–79.Google Scholar
Graham, J. R., Leake, B. E. & Ryan, P. D. 1985. The geology of South Mayo, 1:63360 geologic map. Glasgow: Geology Department, Glasgow University.Google Scholar
Halliday, A. N. & Mitchell, J. G. 1983. K-Ar ages of clay concentrates from Irish orebodies and their bearing on the timing of mineralisation. Transactions of the Royal Society of Edinburgh: Earth Sciences 74, 114.CrossRefGoogle Scholar
Halliday, A. N. & Mitchell, J. G. 1984. K-Ar ages of clay-size concentrates from the mineralisation of the Pedroches Batholith, Spain, and evidence for Mesozoic hydrothermal activity associated with the break up of Pangaea. Earth & Planetary Science Letters 68, 229–39.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1990. A geologic time scale 1989. Cambridge: Cambridge University Press.Google Scholar
Harrison, T. M. 1981. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology 78, 324–31.CrossRefGoogle Scholar
Holser, W. 1979. Trace elements and isotopes in evaporites. In Burns, R. G. (ed.) Marine Minerals, 295346. Reviews in Mineralogy 6. Mineralogical Society of America.CrossRefGoogle Scholar
Horita, J., Cole, D. R. & Wesolowski, D. J. 1995. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapour-liquid water equilibration of NaCl solutions to 350°C. Geochimica Cosmochimica Acta 59, 1139–51.CrossRefGoogle Scholar
Ineson, P. R. & Mitchell, J. G. 1974. K-Ar isotopic age determinations from some Scottish mineral localities. Transactions of the Institution of Mining and Metallurgy 83, B138.Google Scholar
Irwin, J. J. & Roedder, E. 1995. Diverse origins of fluid in magmatic inclusions in Bingham, (Utah, USA), Butte (Montana, USA), St. Austell (Cornwall) and Ascension Island (mid-Atlantic, UK), indicated by laser microprobe analysis of Cl, K, Br, I, Ba + Te, U, Ar, Kr, and Xe. Geochimica Cosmochimica Acta 59, 295312.CrossRefGoogle Scholar
Jaeger, J. C. 1968. Cooling and solidification of igneous rocks. In Hess, H. H. & Poldervaardt, A. (eds) Basalts, 503–36. New York: Interscience.Google Scholar
Jagger, M. D., Max, M. D., Aftalion, M. & Leake, B. E. 1988. U-Pb zircon ages of basic rocks and gneisses intruded into the Dalradian rocks of Cashel, Connemara, Western Ireland. Journal of the Geological Society of London 154, 645–8.CrossRefGoogle Scholar
Jenkin, G. R. T. 1988. Stable isotope studies in the Caledonides of S.W. Connemara, Ireland. Unpublished Ph.D. Thesis, Glasgow University.Google Scholar
Jenkin, G. R. T., Fallick, A. E. & Leake, B. E. 1992. A stable isotope study of retrograde alteration in SW Connemara, Ireland. Contributions to Mineralogy and Petrology 110, 269–88.CrossRefGoogle Scholar
Jenkin, G. R. T., Mohr, P. & Mitchell, J. G. 1993. Carboniferous dykes as monitors of post-400 Ma fluid circulation in Connemara, Western Ireland. Terra Nova 5, 460.Google Scholar
Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M. & White, W. M. 1983. K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306, 431–6.CrossRefGoogle Scholar
Karlsson, H. R. & Clayton, R. N. 1990a. Oxygen isotope fractionation between analcime and water: an experimental study. Geochimica Cosmochimica Acta 54, 1359–68.CrossRefGoogle Scholar
Karlsson, H. R. & Clayton, R. N. 1990b. Oxygen and hydrogen isotope geochemistry of zeolites. Geochimica Cosmochimica Acta 54, 1369–86.CrossRefGoogle Scholar
Kennan, P. S., McArdle, P., Gallagher, V., Morris, J. H., O'Connor, P. J., O'Keefe, W. G., Reynolds, N. & Steed, G. M. 1988. A study of the contribution of isotope geology in the exploration strategy. Commission of the European Communities report EUR 11628 EN.Google Scholar
Knauth, L. P. & Beeunas, M. A. 1986. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochimica Cosmochimica Acta 50, 419–33.CrossRefGoogle Scholar
Kyser, T. K. 1986. Stable isotope variations in the mantle. In Valley, J. W., Taylor, H. P. Jr & O'Neil, J. R. (eds) Stable isotopes in high temperature geological processes, 141–64. Reviews in Mineralogy 16. Mineralogical Society of America.CrossRefGoogle Scholar
Kyser, T. K. & O'Neil, J. R. 1984. Hydrogen isotope systematics of submarine basalts. Geochimica Cosmochimica Acta 48, 2123–33.CrossRefGoogle Scholar
Kyser, T. K., O'Neil, J. R. & Carmichael, I. S. E. 1982. Oxygen isotope thermometry of basic lavas and mantle nodules. Contributions to Mineralogy and Petrology 77, 1123.CrossRefGoogle Scholar
Leake, B. E. 1989. The metagabbros, orthogneisses and paragneisses of the Connemara complex, western Ireland. Journal of the Geological Society of London 146, 575–96.CrossRefGoogle Scholar
Leake, B. E. & Ahmed-Said, Y. 1993. Hornblende barometry of the Galway Granite, Ireland: an empirical test. Mineralogy and Petrology 49, 18.Google Scholar
Leake, B. E., Tanner, P. W. G. & Senior, A. 1981. The geology of Connemara 1:63 360 geologic map. Glasgow: Geology Department, Glasgow University.Google Scholar
Leggo, P. J., Compston, W. & Leake, B. E. 1966. The geochronology of the Connemara granites and its bearing on the antiquity of the Dalradian Series. Journal of the Geological Society of London 122, 91118.CrossRefGoogle Scholar
Long, C. B., McConnell, B. & Archer, J. B. 1995. The geology of Connemara and South Mayo. Dublin: Geological Survey of Ireland.Google Scholar
McDougall, I. & Green, D. H. 1964. Excess radiogenic argon in pyroxenes and isotopic ages on minerals from Norwegian eclogites. Norsk Geologisk Tidsskrift 44, 183–96.Google Scholar
McNabb, A. 1965. On convection in a porous medium. In Proceedings of the Second Australian Conference on Hydralics and Fluid mechanics, c161–c71. New Zealand: University of Auckland.Google Scholar
Marumo, K., Nagasawa, K. & Kuroda, Y. 1980. Mineralogy and hydrogen isotope geochemistry of clay minerals in the Ohnuma geothermal area, northeast Japan. Earth & Planetary Science Letters 47, 255–62.CrossRefGoogle Scholar
Matsuhisa, Y., Goldsmith, J. R. & Clayton, R. N. 1979. Oxygen isotope fractionation in the system quartz-albite-anorthite-water. Geochimica Cosmochimica Acta 43, 1131–40.CrossRefGoogle Scholar
Menuge, J. F., Feely, M., O'Reilly, C. & O'Connor, P. J. 1993. Age and origin of the fluorite mineralisation in the Costelloe Murvey granite, Co. Galway. Annual Irish Geological Research Meeting, Cork. Abstracts, 17.Google Scholar
Menuge, J. F., Feely, M. & O'Reilly, C. 1997. Origin and granite alteration effects of hydrothermal fluid: Isotopic evidence from fluorite veins, Co. Galway, Ireland. Mineralium Deposita 32, 3443.CrossRefGoogle Scholar
Miller, W. M., Fallick, A. E., Leake, B. E., Macintyre, R. M. & Jenkin, G. R. T. 1991. Fluid disturbed hornblende K-Ar ages from the Dalradian rocks of Connemara, Western Ireland. Journal of the Geological Society of London 148, 985–92.CrossRefGoogle Scholar
Mitchell, J. G. & Halliday, A. N. 1976. Extent of Triassic/Jurassic hydrothermal ore deposits on the North Atlantic margins. Transactions of the Institution of Mining and Metallurgy B85, 159–61.Google Scholar
Mitchell, J. G. & Mohr, P. 1986. K-Ar systematics in Tertiary dolerites of West Connacht, Ireland. Scottish Journal of Geology 22, 225–40.CrossRefGoogle Scholar
Mitchell, J. G. & Mohr, P. 1987. Carboniferous dykes of West Connacht, Ireland. Transactions of the Royal Society of Edinburgh: Earth Sciences 78, 133–51.CrossRefGoogle Scholar
Mohr, P. 1982. Tertiary dolerite intrusions of west-central Ireland. Proceedings of the Irish Academy 82B, 5382.Google Scholar
Mohr, P. 1988. The analcime-olivine dolerites of West Connacht, Ireland: classification and genetic problems. Irish Journal of Earth Science 9, 133–40.Google Scholar
Mohr, P. 1993. Composite dolerite-granophyre dykes and associated granitic intrusions of Carboniferous age in eastern Connemara, Ireland. Irish Journal of Earth Science 12, 119–38.Google Scholar
Munoz, M., Boyce, A. J., Courjault-Rade, P., Fallick, A. E. & Tollon, F. 1994. Multi-stage fluid incursion in the Paleozoic basement hosted Saint-Salvy ore deposit (NW Montagne Noire, southern France). Applied Geochemistry 9, 609–26.CrossRefGoogle Scholar
O'Connor, P. J., Högelsberger, H., Feely, M. & Rex, D. C. 1993. Fluid inclusion studies, rare-earth element chemistry and age of hydrothermal fluorite mineralisation in western Ireland—a link with continental rifting. Transactions of the Institution of Mining and Metallurgy B102, 141–8.Google Scholar
O'Neil, J. R. & Taylor, H. P. Jr 1967. The oxygen isotope and cation exchange chemistry of feldspars. The American Mineralogist 52, 1414–37.Google Scholar
O'Neil, J. R. & Taylor, H. P. Jr 1969. Oxygen isotope equilibrium between muscovite and water. Journal of Geophysical Research 74, 6012–22.CrossRefGoogle Scholar
Onstott, T. C., Miller, M. L., Ewing, R. C., Arnold, G. W. & Walsh, D. S. 1995. Recoil refinements: Implications for the 40Ar/39Ar dating technique. Geochimica Cosmochimica Acta 59, 1821–34.CrossRefGoogle Scholar
O'Reilly, C., Jenkin, G. R. T., Feely, M., Alderton, D. H. M. & Fallick, A. E. 1997. A microthermometric, stable isotope and chemical study of fluid evolution in the Galway Granite, Connemara, Ireland. Contributions to Mineralogy & Petrology 129, 120142.CrossRefGoogle Scholar
Otsuka, R., Yamazaki, A. & Kato, K. 1991. Kinetics and mechanism of dehydration of natrolite and its potassium exchanged form. Thermochimica Acta 181, 4556.CrossRefGoogle Scholar
Pattrick, R. A. D. & Russell, M. J. 1989. Sulphur isotopic investigation of Lower Carboniferous vein deposits of the British Isles. Mineralium Deposita 24, 148–53.CrossRefGoogle Scholar
Penn, I. E., Holliday, D. W., Kirby, G. A., Kubala, M., Sobey, R. A., Mitchell, W. I., Harrison, R. K. & Beckinsale, R. D. 1983. The Larne No. 2 borehole: discovery of a new Permian volcanic centre. Scottish Journal of Geology 19, 333–46.CrossRefGoogle Scholar
Pidgeon, R. T. 1969. Zircon U-Pb ages from the Galway granite and the Dalradian, Connemara, Ireland. Scottish Journal of Geology 5, 375–92.CrossRefGoogle Scholar
Poreda, R., Schilling, J. G. & Craig, H. 1986. Helium and hydrogen isotopes in ocean ridge basalts north and south of Iceland. Earth & Planetary Science Letters 78, 117.CrossRefGoogle Scholar
Rogers, G. & Dunning, G. R. 1991. Geochronology of appinitic and related granitic magmatism in the W Highlands of Scotland: constraints on the timing of transcurrent fault movement. Journal of the Geological Society of London 148, 1727.CrossRefGoogle Scholar
Rogers, G., Dempster, T. J., Bluck, B. J. & Tanner, P. W. G. 1989. A high precision U-Pb age for the Ben Vuirich granite: implications for the evolution of the Scottish Dalradian Supergroup. Journal of the Geological Society of London 146, 789–98.CrossRefGoogle Scholar
Ryan, P. D., Floyd, P. A. & Archer, J. B. 1980. The stratigraphy and petrochemistry of the Lough Nafooey Group (Tremadocian), western Ireland. Journal of the Geological Society of London 137, 443–58.CrossRefGoogle Scholar
Senior, A. 1973. The geology of the Shannawona district. Connemara, Eire. Unpublished Ph.D. Thesis, Bristol University.Google Scholar
Sevastopulo, G. D. 1981. Lower Carboniferous, Upper Carboniferous. In Holland, C. H. (ed.) A Geology of Ireland, 147–87. Edinburgh: Scottish Academic Press.Google Scholar
Scrivener, R. C., Darbyshire, D. P. F. & Shepherd, T. J. 1994. Timing and significance of crosscourse mineralisation in SW England. Journal of the Geological Society of London 151, 587–90.CrossRefGoogle Scholar
Sharp, Z. D. & Jenkin, G. R. T. 1994. An empirical estimate of the diffusion rate of oxygen in diopside. Journal of Metamorphic Geology 12, 8997.CrossRefGoogle Scholar
Sheppard, S. M. F. 1986. Characterisation and isotopic variations in natural waters. In Valley, J. W., Taylor, H. P. Jr & O'Neil, J. R. (eds) Stable isotopes in high temperature geological processes, 165–83, 41–90. Reviews in Mineralogy 16, Mineralogical Society of America.CrossRefGoogle Scholar
Smedley, P. L. 1986. The relationship between calc-alkaline volcanism and within-plate continental rift volcanism: evidence from Scottish Paleozoic lavas. Earth & Planetary Science Letters 76, 113–28.CrossRefGoogle Scholar
Smith, A. G., Hurley, A. M. & Briden, J. C. 1981. Phanerozoic paleocontinental world maps. Cambridge: University Press.Google Scholar
Suzuoki, T. & Epstein, S. 1976. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica Cosmochimica Acta 40, 1229–40.CrossRefGoogle Scholar
Tate, M. P. & Dobson, M. R. 1989. Late Permian to early Mesozoic rifting and sedimentation offshore NW Ireland. Marine and Petroleum Geology 6, 4959.CrossRefGoogle Scholar
Taylor, B. E. 1986. Magmatic volatiles: Isotopic variation in C, H and S. In Valley, J. W., Taylor, H. P. Jr & O'Neil, J. R. (eds) Stable isotopes in high temperature geological processes, 185225. Reviews in Mineralogy 16. Mineralogical Society of America.CrossRefGoogle Scholar
Taylor, H. P. Jr 1968. The oxygen isotope geochemistry of igneous rocks. Contributions to Mineralogy and Petrology 19, 171.CrossRefGoogle Scholar
Taylor, H. P. Jr 1977. Water/rock interactions and the origin of H2O in granitic batholiths. Journal of the Geological Society of London 133, 509–58.CrossRefGoogle Scholar
Taylor, H. P. Jr & Sheppard, S. M. F. 1986. Igneous rocks: I processes of isotope fractionation and isotope systematics. In Valley, J. W., Taylor, H. P. Jr & O'Neil, J. R. (eds) Stable isotopes in high temperature geological processes, 227–71. Reviews in Mineralogy 16. Mineralogical Society of America.CrossRefGoogle Scholar
Thompson, P. 1985. Dating the British Tertiary Igneous Province in Ireland by the 40Ar/39Ar stepwise degassing method. Unpublished Ph.D. Thesis, Liverpool University.Google Scholar
Turner, G. & Bannon, M. P. 1992. Argon isotope geochemistry of inclusion fluids from granite associated mineral veins in south west and north east England. Geochimica Cosmochimica Acta 56, 227–43.CrossRefGoogle Scholar
Wenner, D. B. & Taylor, H. P. Jr 1971. Temperatures of serpentinisation of ultramafic rocks based on 18O/16O fractionation between coexisting serpentine and magnetite. Contributions to Mineralogy and Petrology 32, 165–85.CrossRefGoogle Scholar
Wilkinson, P., Mitchell, J. G., Cattermole, P. J. & Downie, C. 1986. Volcanic chronology of the Meru-Kilimanjaro region, northern Tanzania. Journal of the Geological Society of London 143, 601–5.CrossRefGoogle Scholar
Williams, B. & Brown, C. 1986. A model for the genesis of Zn-Pb deposits in Ireland. In Andrew, C. J., Crowe, R. W. A., Finlay, S., Pennell, W. M. & Pyne, J. F. (eds) Geology and genesis of mineral deposits in Ireland, 579–90. Dublin: Irish Association of Economic Geologists.Google Scholar
Williams, D. M., Armstrong, H. A. & Harper, D. A. T. 1988. The age of the South Connemara Group, Ireland and its relationship to the Southern Uplands Zone of Scotland and Ireland. Scottish Journal of Geology 24, 279–87.CrossRefGoogle Scholar
Williamson, J. H. 1968. LSQ fitting of a straight line. Canadian Journal of Physics 46, 1845–47.CrossRefGoogle Scholar
Wilson, H. E. 1981. Permian and Mesozoic. In Holland, C. H. (ed.) A Geology of Ireland, 201–12. Edinburgh: Scottish Academic Press.Google Scholar
Yardley, B. W. D., Bottrell, S. H. & Cliff, R. A. 1991. Evidence for a regional-scale fluid loss event during mid-crustal metamorphism. Nature 349, 151–54.CrossRefGoogle Scholar
Ziegler, P. A. 1990. Geological atlas of Western and Central Europe, 2nd edn. The Hague: Shell Internationale Petroleum Maatschappij B.V.Google Scholar