Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T10:38:20.318Z Has data issue: false hasContentIssue false

Arthropods invade the land: trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia

Published online by Cambridge University Press:  03 November 2011

N. H. Trewin
Affiliation:
Department of Geology and Petroleum Geology, University of Aberdeen, King's College, Aberdeen AB9 2UE, Scotland, U.K.
K. J. McNamara
Affiliation:
Western Australian Museum, Department of Earth and Planetary Sciences, Francis Street, Perth, Western Australia 6000

Abstract

The trace fossils of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia are spectacular in their variety and preservation. They provide a unique insight into the activities of the early invaders of terrestrial environments, and reveal the presence of a diverse fauna dominated by arthropods. Within the Formation trace fossil assemblages can be related to fluvial, aeolian and marine sand-dominated environments. Two distinct and diverse ichnofaunas are recognised.

The Heimdallia–Diplichnites Ichnofauna occurs in sandstones deposited in broad low sinuosity braided fluvial channels, between which were mixed aeolian and waterlain sandsheets, small aeolian dunes and flooded interdune and deflation hollows. Heimdallia is the major bioturbator, favouring shallow pools. Other burrows include Tumblagoodichnus (gen. nov.), Diplocraterion, Skolithos, Beaconites and Didymaulyponomos. Arthropod trackways (Diplichnites) occur on surfaces of waterlain sands and on foreset bedding of aeolian dunes, and represent some of the earliest reported terrestrial trackways. Other trackways include Paleohelcura and Protichnites, and the digging traces Selenichnites and Rusophycus are also present. At least ten types of arthropods are required to produce the observed traces. Myriapods, eurypterids, euthycarcinoids, xiphosurids and scorpionids are considered responsible for the trackway assemblage.

The Skolithos–Diplocraterion Ichnofauna occurs at the top of the exposed section in sandstones that overlie a thick fluvial sequence containing few traces. The strata are considered to represent marine influence at a fluvial/marine transition. They show variable trough cross-bedding, complex planar cross-bedding with down-climbing sets, ripple lamination, and fining-up sequences with bioturbated tops. Traces are dominated by crowded Skolithos up to 1 m long, together with two forms of Diplocraterion. Daedalus and Lunatubichnus (gen. nov.) burrows occur in a few beds and Aulichnites trails cover some foreset surfaces of cross-bedding.

The trace fossils and the sedimentology of the Tumblagooda Sandstone bear a remarkable similarity to those of the lower part of the Taylor Group of Antarctica, which is probably Devonian in age. It is suggested that the two represent a similar age, stratigraphy, and range of environments on the margins of Gondwana. Large unvegetated fluvial outwash plains with variable aeolian influence were essentially coastal in character and fluvial/marine transitions occur in sand-rich environments. The animals responsible for the traces inhabited coastal areas but many could survive outwith marine influence, and arthropods responsible for some types of Diplichnites trackways walked out of water.

The rich diversity of trackways attributable to arthropods illustrate that the invasion of terrestrial environments by arthropods, particularly large forms, was well-established by the beginning of the Devonian. The basis of the food chain was algal and bacterial films which bound the surface sediment in freshwater pools.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, S. P. 1974. Systematic review of the genus Skolithos. J PALEONTOL 48, 661–9.Google Scholar
Anderson, A. M. 1981. The Umfolozia arthropod trackways in the Permian Dwyka and Ecca Series of South Africa. J PALEONTOL 55, 84108.Google Scholar
Barrett, P. J. 1979. The non-marine character of the Devonian Taylor Group (Beacon Supergroup) in South Victoria Land, Antarctica. Proceedings of the Fourth International Gondwana Symposium, Calcutta 1911, pp. 478–80.Google Scholar
Barrett, P. J. & Kohn, B. P. 1975. Changing sediment transport directions from Devonian to Triassic in the Beacon Supergroup of South Victoria Land, Antarctica. In Campbell, K. S. W. (ed.) Gondwana geology, 1535. Canberra: Australian National University Press.Google Scholar
Benton, M. J. & Trewin, N. H. 1978. Discussion and comments on Nicholson's 1872 manuscript ‘Contributions to the study of the errant annelides of the older Palaeozoic rocks’. PUBL DEP GEOL MINER, UNIV ABERDEEN 1, 116.Google Scholar
Benton, M. J. & Trewin, N. H. 1980. Dictyodora from the Silurian of Peebleshire. Scotland. PALAEONTOL 23, 501–13.Google Scholar
Bradshaw, M. A. 1981. Palaeoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (lower Beacon Supergroup). Antarctica. N Z J GEOL GEOPHYS 24, 615–52.Google Scholar
Bradshaw, M. A. 1989. Trace fossil and geological studies in the Darwin Glacier area. N Z ANTARCT REC 9, 22.Google Scholar
Bradshaw, M. A. & McCartan, L. 1991. Palaeoecology and systematics of Early Devonian bivalves from the Horlick Formation. Ohio Range, Antarctica. ALCHERINGA 15, 142.CrossRefGoogle Scholar
Bradshaw, M. A., Harmsen, F. J. & Kirkbride, M. P. 1990. Preliminaryresults of the 1988–1989 expedition to the Darwin Glacier area. N Z ANTARCT REC 10, 2848.Google Scholar
Brady, L. F. 1947. Invertebrate tracks from the Coconino Sandstone of northern Arizona. J PALEONTOL 21, 466–72.Google Scholar
Briggs, D. E. G., Dalingwater, J. E. & Selden, P. A. 1991. Biomechanics of locomotion in fossil arthropods. In Rayner, J. M. V. & Wootton, R. J. (eds) Biomechanics and evolution, 3756. Cambridge: Cambridge University Press.Google Scholar
Briggs, D. E. G. & Rolfe, W. D. I. 1983. A giant arthropod trackway from the lower Mississippian of Pennsylvania. J PALEONTOL 57, 377390.Google Scholar
Briggs, D. E. G., Rolfe, W. D. I. & Brannan, J. 1979. A giant myriapod trail from the Namurian of Arran. Scotland. PALAEONTOL 22, 273–91.Google Scholar
Briggs, D. E. G., Plint, A. G. & Pickerill, R. K. 1984. Arthropleura trails from the Westphalian of eastern Canada. PALAEONTOL 27, 843–55.Google Scholar
Bromley, R. G. 1990. Trace fossils: biology and taphonomy (Special topics in palaeontology. No. 3). London: Unwin Hyman.Google Scholar
Carroll, S. 1991. Terrestrial, fluvial and marginal lacustrine ecosystems in the Old Red Sandstone of the Orcadian Basin. Ph.D. thesis University of Aberdeen (unpublished).Google Scholar
Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains. southeast Oklahoma. J PALEONTOL 45, 212–46.Google Scholar
Chisholm, J. I. 1983. Xiphosurid traces. Kauphictmiitm aft variabilis (Link), from the Namurian Upper Haslingden Flags of Whitworth. Lancashire. INST GEOL SCI REP 83/10. 3744.Google Scholar
Chisholm, J. I. 1985. Xiphosurid burrows from the Lower Coal Measures (Westphalian A) of West Yorkshire. PALAEONTOL 28, 619–28.Google Scholar
Crimes, T. P. 1977. Trace fossils of an Eocene deep–sea sand fan, northern Spain. In Crimes, T. P. & Harper, J. C. (eds) Trace Fossils 2. GEOL J SPEC ISSUE 9, 7190.Google Scholar
Crimes, T. P., Legg, I.. Marcus, A. & Arboleya, M. 1977. ?Late Precambrian-low Lower Cambrian trace fossils from Spain. In Crimes, T. P. & Harper, J. C. (eds). Trace Fossils 2. GEOL J SPEC ISSUE 9, 91138.Google Scholar
D'Alessandro, A., Ekdale, A. A., & Pickard, M. D. 1987. Trace fossils in the fluvial deposits of the Duchesne River Formation (Eocene), Uinta Basin. Utah. PALAEOGEOG PALAEOCLIMATOL PALAEOECOL 61, 285301.Google Scholar
Dawson, J. W. 1862. Notice on the discovery of additional remains of land animals in the coal–measures of the South–Joggins. Nova Scotia. Q J GEOL SOC LONDON 18, 57.Google Scholar
Dawson, J. W. 1873. Impressions and footprints of aquatic animals and imitative markings on Carboniferous rocks. AM J SCI SER 35, 1624.CrossRefGoogle Scholar
Drosser, M. L. 1991. Ichnofabric of Palaeozoic Skolithos Ichnofacies and the nature and distribution of Skolithos piperock. PALAIOS 6, 316–25.CrossRefGoogle Scholar
Edwards, D. & Selden, P. A. 1993. The development of early terrestrial ecosystems. BOT J SCOTLAND 46, 337–66.CrossRefGoogle Scholar
Ekdale, A. A., Bromley, R. G. & Pemberton, S. G. 1984. Ichnology: the use of trace fossils in sedimentologv and stratigraphy. SOC ECON PALEONTOL MINER SHORT COURSE 15, 1317.Google Scholar
Fenton, C. L. & Fenton, M. A. 1937. Burrows and trails from Pennsylvanian rocks of Texas. AM MIDLAND NAT 18, 1079–84.Google Scholar
Fillion, D. & Pickerill, R. K. 1990. Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada. PALAEONTOGR CANADIANA 7, 1119.Google Scholar
Fursich, F. T. 1974. On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreiten-bearing, U-shaped trace fossils. J PALEONTOL 48, 952–62.Google Scholar
Gevers, T. W. 1973. A new name for the ichnogenus Arthropodichnus Gevers 1971. J PALEONTOL 47, 1002.Google Scholar
Gevers, T. W. & Twomey, A. 1982. Trace fossils and their environment in Devonian (Silurian?) Lower Beacon strata in the Asgard Ranges, Victoria Land, Antarctica. In Craddock, C. (ed.) Antarctic geoscience, 639–48. Madison, Wisconsin: University of Wisconsin Press.Google Scholar
Gevers, T. W., Frakes, L. A., Edwards, L. N. & Marzolf, J. E. 1971. Trace fossils in the Lower Beacon sediments (Devonian) Darwin Mountains, Southern Victoria Land, Antarctica. J PALEONTOL 45, 8194.Google Scholar
Gilmore, C. W. 1926. Fossil footprints from the Grand Canyon. SMITHSONIAN MISC COLL 77, (a).Google Scholar
Gorter, J. D., Nicoll, R. S. & Foster, C. B. Lower Palaeozoic facies in the Carnarvon Basin, Western Australia: stratigraphy and hydrocarbon prospectivity. In Purcell, P. G. & Purcell, R. R. (eds) The sedimentary basins of Western Australia. Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, 1994, pp. 373–96.Google Scholar
Hakes, W. G. 1977. Trace fossils in Late Pennsylvanian cyclothems, Kansas. In Crimes, T. P. & Harper, J. C. (eds) Trace Fossils 2. GEOL J SPEC ISSUE 9, 209–26.Google Scholar
Haldemann, S. S. 1840. Supplement to number one of ‘A monograph of the Limniades, and other freshwater univalve shells of North America’, containing descriptions of apparently new animals in different classes, and the names and characters of the subgenera in Paludina and Anculosa. (Philadelphia).Google Scholar
Hall, J. 1852. Natural History of New York, Palaeontology v.2. Albany. N.Y.Google Scholar
Hamilton, W. & Hayes, P. T. 1963. Type section of the Beacon Sandstone of Antarctica. U S GEOL SURV PROF PAP 456–A, 118.Google Scholar
Hanken, N. M. & Stormer, L. 1975. The trail of a large Silurian eurypterid. FOSSILS & STRATA 4, 255–70.CrossRefGoogle Scholar
Hannibal, J. T. & Feldmann, R. M. 1983. Arthropod trace fossils. interpreted as echinocarid escape burrows, from the Chagrin Shale (Late Devonian) of Ohio. J PALEONTOL 57, 705–16.Google Scholar
Hantzschel, W. 1975. Trace fossils and problematica. In Teichert, C. (ed.) Treatise on invertebrate paleontology. Part W, Miscellanea, Supplement 1. Geological Society of America and University of Kansas Press.Google Scholar
Hardy, P. G. 1970. Xiphosurid trails from the Upper Carboniferous of northern England. PALAEONTOL 13, 188–90.Google Scholar
Helby, R. J. & McElroy, C. T. 1969. Microfloras from the Devonian and Triassic of the Beacon Group, Antarctica. N Z J GEOL GEOPHYS 12, 376–82.Google Scholar
Hocking, R. M. 1979. Sedimentology of the Tumblagooda Sandstone (Silurian) in the lower Murchison River area, Western Australia: a preliminary interpretation. W AUST GEOL SURV ANN REP 1978, 4044.Google Scholar
Hocking, R. M. 1981. The Tumblagooda Sandstone, Western Australia: its type section and sedimentology: W AUST GEOL SURV ANN EP 1980, 5361.Google Scholar
Hocking, R. M. 1987. Sedimentology and basin architecture of the Silurian Tumblagooda Sandstone, Perth–Carnarvon Basin, Western Australia. MSc thesis University of New England, Armidale, New South Wales (unpublished).Google Scholar
Hocking, R. M. 1991. The Silurian Tumblagooda Sandstone, Western Australia. GEOL SURV W AUST REP 27.Google Scholar
Hocking, R. M., Moors, H. T. & Van De Graaf, W. J. E. 1987. Geology of the Carnarvon Basin, Western Australia. GEOL SURV W AUST BULL 133.Google Scholar
Hunter, R. E. 1977. Basic types of stratification in small eolian dunes. SEDIMENTOL 24, 361–87.CrossRefGoogle Scholar
Jeram, A. J., Selden, P. A. & Edwards, D. 1990. Land animals in the Silurian: arachnids and myriapods from Shropshire, England. SCIENCE 250, 658–61.Google Scholar
Johnson, E. W., Briggs, D. E. G., Suthren, R. J., Wright, J. L. & TunniclifT, S. P. 1994. Non-marine arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake District. GEOL MAG 131, 395406.CrossRefGoogle Scholar
Kocurek, G. & Nielson, J. 1986. Conditions favorable for the formation of warm climate sand seas. SEDIMENTOL 33, 795816.CrossRefGoogle Scholar
Ksiazkiewicz, M. 1970. Observations on the ichnofauna of the Polish Carpathians. In Crimes, T. P. & Harper, J. C. (eds) Trace fossils. GEOL J SPEC ISSUE 3, 283322.Google Scholar
Kyle, R. A. 1977. Devonian palynomorphs from the basal Beacon Supergroup of South Victoria Land, Antarctica (note). N Z J GEOL GEOPHYS 20, 1147–50.Google Scholar
Langford, R. P. & Chan, M. A. 1989. Modern and ancient fluvialaeolian interactions: Part II, ancient systems. SEDIMENTOL 36, 1037–51.CrossRefGoogle Scholar
McKee, E. D. & Bigarella, J. J. 1979. Sedimentary structures in dunes. In McKee, E. D. (ed.), A study of global sand seas. V S GEOL SURV PROF PAP 1052, 83134.Google Scholar
McKeever, P. J. 1991. Trackway preservation in eolian sandstones from the Permian of Scotland. GEOLOGY 19, 726–9.Google Scholar
McNamara, K. J. 1981. We may never pass this way again. GEO AUST GEOGR MAG 3, 99105.Google Scholar
McNamara, K. J. & Trewin, N. H. 1993. A euthycarcinoid arthropod from the Silurian of Western Australia. PALAEONTOL 36, 319335.Google Scholar
Manton, S. M. 1977. The Arthropoda: habits, functional morphology and evolution. Oxford: Clarendon Press. Oxford.Google Scholar
Nicholson, H. A. 1873. Contributions to the study of the errant annelides of the older Palaeozoic rocks. PROC R SOC LONDON 21, 288290. (See Benton & Trewin 1978 for full text and discussion of this Nicholson abstract.)Google Scholar
Öpik, A. A. 1959. Tumblagooda Sandstone trails and their age. AUST BUR MINER RESOUR, GEOL & GEOPHYS REP 38, 320.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati area. PALAEONTOGR AMERICANA 6, 281444.Google Scholar
Owen, R. 1852. Description of the impressions and footprints of the Protichnites from the Potsdam Sandstone of Canada. Q J GEOL SOC LONDON 8, 214–25.Google Scholar
Philip, G. M. 1969. Silurian conodonts from the Dirk Hartog Formation, Western Australia. PROC R SOC VICTORIA 82, 287–97.Google Scholar
Playford, P. E., Cope, R. N., Cockbain, A. E., Low, G. H. & Lowry, D. C. 1975. Phanerozoic. In Geology of Western Australia. W AUST GEOL SURV MEM 2, 223433.Google Scholar
Plume, R. W. 1978. A revision of the existing stratigraphy of the New Mountain Sandstone (Beacon Supergroup), South Victoria Land, Antarctica. N Z J GEOL GEOPHYS 21, 167–73.Google Scholar
Plume, R. W. 1982. Sedimentology and palaeocurrent analysis of the basal part of the Beacon Supergroup (Devonian [and older?] to Triassic) in south Victoria Land, Antarctica. In Craddock, C. (ed.), Antarctic geoscience, 571–80. Madison, Wisconsin: University of Wisconsin Press.Google Scholar
Pollard, J. E. & Walker, E. F. 1984. Reassessment of sediments and trace fossils from Old Red Sandstone (Lower Devonian) of Dunure, Scotland, described by John Smith (1909). GEOBIOS 17, 567–76.CrossRefGoogle Scholar
Richter, R. 1954. Fahrte eines 'Riesenkrebes' im Rheinischen Schiefergebirge. NATUR U VOLK 84, 261–9.Google Scholar
Rolfe, W. D. I. 1980. Early invertebrate terrestrial faunas. In Panchen, A. L. (ed.), The terrestrial environment and the origin of land vertebrates, 117–57. Systematic Association Special Volume No. 15. London: Academic Press.Google Scholar
Romano, M., & Whyte, M. A. 1987. A limulid trace fossil from the Scarborough Formation (Jurassic) of Yorkshire, its occurrence, taxonomy and interpretation. PROC YORKSHIRE GEOL SOC 46, 8595.Google Scholar
Romano, M., & Whyte, M. A. 1990. Selenichnites, a new name for the ichnogenus Selenichnus Romano & Whyte, 1987. PROC YORKSHIRE GEOL SOC 48, 221.CrossRefGoogle Scholar
Rouault, M. 1850. Note preliminaire sur une nouvelle formation decouverte dans le terrain Silurian inferieur de la Bretagne. SOC GEOL FRANCE. BULL SER 27, 724–44.Google Scholar
Sacco, F. 1888. Note di paleoichnologia Italiana. ATTI DELLA SOCRETA ITALIANA DI SCIENZE NATURALI 31, 151191.Google Scholar
Sadler, C. J. 1993. Arthropod trace fossils from the Permian De Chelly Sandstone, northeastern Arizona. J PALEONTOL 67, 240–49.Google Scholar
Sarle, C. J. 1906. Arthrophvcus and Daedalus of burrow origin. PROC ROCHESTER ACAD SCI 4, 203–10.Google Scholar
Schmidt, P. W. & Embleton, B. J. J. 1990. The palaeomagnetism of the Tumblagooda Sandstone, Western Australia: Gondwana palaeozoic apparent polar wandering. PHYS EARTH PLANET INTER 64, 303–13.Google Scholar
Schmidt, P. W. & Hamilton, P. J. 1990. Palaeomagnetism and the age of the Tumblagooda Sandstone, Western Australia. AUST J EARTH SCI 37, 381–5.Google Scholar
Seilacher, A. 1955. Spuren and Lebensweise der Trilobiten; Spuren und Fazies im Unterkambirum. In Schindewolf, O. H. & Seilacher, A. (eds) Beitrage zur Kenntnis des Kambriums in der Salt Range (Pakistan). AKAD WISS LIT MAINZ ABH MATHNATURWISS KL 10, 86143.Google Scholar
Seilacher, A. 1964. Biogenic sedimentary structures. In Imbrie, J. & Newell, N. (eds) Approaches to paleoecology, 296316. New York: Wiley.Google Scholar
Seilacher, A. 1985. Trilobite palaeobiology and substrate relationships. TRANS R SOC EDINBURGH: EARTH SCI 76, 231–7.Google Scholar
Shear, W. A. 1991. The early development of terrestrial ecosystems. NATURE 351, 283–9.CrossRefGoogle Scholar
Shear, W. A., Bonamo, P. M., Grierson, J. D., Rolfe, W. D. I., Smith, E. L. & Norton, R. A. 1984. Early land animals in North America: evidence from Devonian age arthropods from Gilboa, New York. SCIENCE 224, 492–4.CrossRefGoogle ScholarPubMed
Sherwood, A. M., Kirk, P. A. & Woolfe, K. J. 1988. Depositional setting of the Taylor Group. Knobhead Area, Southern Victoria Land, Antarctica. N Z GEOL SURVEY RECORD 35, 122–5.Google Scholar
Simpson, E. L. & Eriksson, K. A. 1990. Eolian and fluvial interaction: The Early Proterozoic Whitworth Fm. Mt. Isa Inlier, Australia. 13th International Sedimentological Congress Nottingham. Abstracts (posters) p. 204.Google Scholar
Simpson, E. L. & Loope, D. B. 1985. Amalgamated interdune deposits. White Sands, New Mexico. J SEDIMENT PETROL 55, 361–5.Google Scholar
Smith, J. 1909. Upland fauna of the Old Red Sandstone Formation of Carrick, Ayrshire. Kilwinning: A. W. Cross.Google Scholar
Stormer, L. 1972. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel. Germany. Part 2: Xiphosura. SENCKENBERGIANA LETHAEA 53, 129.Google Scholar
Stormer, L. 1976. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 5: Myriapoda and additional forms, with general remarks on fauna and problems regarding invasion of land by arthropods. SENCKENBERGIANA LETHAEA 57, 87183.Google Scholar
Talbot, M. R. 1985. Major bounding surfaces in aeolian sandstones–a climatic model. SEDIMENTOL 32, 257–65.CrossRefGoogle Scholar
Tansathien, W. & Pickerill, R. K. 1987. A giant Rusophycus from the Arisaig Group (Siluro-Devonian) of Nova Scotia. MARIT SEDIMENTS & ATL GEOL 23, 8993.Google Scholar
Torell, O. M. 1870. Petrificata Suecana formationis Cambricae. LUNDS UNIV ARSSKR 6, pt. 2, No. 8. 114.Google Scholar
Trewin, N. H. 1976. Isopodichnus in a trace fossil assemblage from the Old Red Sandstone. LETHAIA 9, 2937.CrossRefGoogle Scholar
Trewin, N. H. 1993a. Mixed aeolian sandsheet and fluvial deposits in the Tumblagooda Sandstone, Western Australia. In North, C. P. & Prosser, D. J. (eds), Characterisation of fluvial and aeolian reservoirs, 219–30. GEOL SOC LONDON SP PUBL 73.CrossRefGoogle Scholar
Trewin, N. H. 1993b. Controls on fluvial deposition in mixed fluvial and aeolian facies within the Tumblagooda Sandstone (Late Silurian) of Western Australia. SEDIMENT GEOL 85, 387400.Google Scholar
Trewin, N. H. 1993c. The Lower Old Red Sandstone and Helmsdale Granite of the Ousdale area. In Trewin, N. H. & Hurst, A. (eds) Excursion guide to the geology of East Sutherland and Caithness. 115122. Edinburgh: Scottish Academic Press.Google Scholar
Trewin, N. H. (in press). A draft system for the identification and description of arthropod trackways. PALAEONTOL.Google Scholar
Trewin, N. H. & Kneller, B. C. 1987. Old Red Sandstone and Dalradian of Garmie Bay. In Trewin, N. H., Kneller, B. C. & Gillen, C. (eds). Excursion guide to the geology of the Aberdeen area, 113–26. Edinburgh: Scottish Academic Press.Google Scholar
Vialov, O. S. 1962. Problematica of the Beacon Sandstone at Beacon Height West, Antarctica. N Z J GEOL GEOPHYS 5, 718–32.CrossRefGoogle Scholar
Walker, E. F. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 76, 287–97.Google Scholar
Walter, H. 1983. Zur Taxonomie. Okologie und Biostratigraphie der Ichnia limnish–terrestricher Arthropoden des mitteleuropaishen Jungpalaozoikums. FREIBERGER FORSCHUNGSHEFTE C382, 146–93.Google Scholar
Wang, G. 1993. Xiphosurid trace fossils from the Westbury Formation (Rhaetian) of southwest Britain. PALAEONTOL 36, 111–22.Google Scholar
Warris, B. J. 1994. The hydrocarbon potention of the onshore Carnarvon Basin. In Purcell, P. G. & Purcell, R. R. (eds) The sedimentary basins of Western Australia. Proceedings of Petroleum Exploration Society of Australia Symposium, Perth. 1994. pp. 365–72.Google Scholar
Webb, P. N. 1963. Geological investigations in southern Victoria Land, Antarctica. Part 4. Beacon Group of the Wright Valley and Taylor Glacier region. N Z J GEOL GEOPHYS 6, 361–87.Google Scholar
Webby, B. D. 1968. Devonian trace fossils from the Beacon Group of Antarctica. N Z J GEOL GEOPHYS 11, 1001–8.Google Scholar
Woolfe, K. J. 1990. Trace fossils as paleoenvironmental indicators in the Taylor Group (Devonian) of Antarctica. PALAEOGEOG PALAEOCLIMATOL PALAEOECOL 80, 301–10.Google Scholar
Young, F. G. 1972. Early Cambrian and older trace fossils from the Southern Cordillera of Canada. CAN J EARTH SCI 9, 117.Google Scholar
Young, G. C. 1989. The Aztec fish fauna (Devonian) of Southern Victoria Land: Evolutionary and biogeographic significance. In Crame, J. A. (ed.) Origins and evolutions of the Antarctic biota. 4362. GEOL SOC LONDON SP PUBL 47.Google Scholar
Young, V. T. 1986. Early Devonian fish material from the Horlick Formation, Ohio Range, Antarctica. ALCHERINGA 10, 3544.Google Scholar