Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T17:01:58.414Z Has data issue: false hasContentIssue false

An Early Cretaceous sponge meadow from the Neuquén Basin, west-central Argentina: unsuspected hosts of a dynamic sclerobiont community

Published online by Cambridge University Press:  23 February 2023

Leticia LUCI*
Affiliation:
Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Güiraldes 2160, Pabellón 2 Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Ricardo M. GARBEROGLIO
Affiliation:
Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Güiraldes 2160, Pabellón 2 Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Agustina G. TOSCANO
Affiliation:
Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Güiraldes 2160, Pabellón 2 Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Darío G. LAZO
Affiliation:
Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Güiraldes 2160, Pabellón 2 Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Cecilia S. CATALDO
Affiliation:
Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Güiraldes 2160, Pabellón 2 Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
María B. AGUIRRE-URRETA
Affiliation:
Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Güiraldes 2160, Pabellón 2 Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
*
*Corresponding author. Email: [email protected]

Abstract

Sponges, especially Calcarea, are minor components of benthic associations, especially during the Mesozoic. In the Lower Cretaceous of the Neuquén Basin, small calcareous sponges have been found building a small monospecific meadow. It is restricted to a marlstone lens-shaped bed in a quiet outer-ramp setting in the Cerro Marucho Locality (Picún Leufú depocentre), above a shell bed of small exogyrid oysters; oysters and sponges were the only preserved macrobenthic faunal elements. Individual sponges were small, under 4 cm high, and presented a sub-cylindrical morphology with one or more rounded, apical osculi, many inhalant openings and triactine spicules. Specimens studied here were assigned to Endostoma sp. aff. Endostoma nodosa. These sponges are quite commonly encrusted by exogyrid oysters, serpulids, sabellids, agglutinating foraminifers and cyclostome bryozoans. Overgrowths among sclerobionts were common, though no undoubtedly in vivo interaction has been recorded. Disarticulated left oyster valves were frequently bioclaustrated by the sponges, showing that in vivo settlement upon sponges was common. Many oysters settled in the periphery of the osculum suggesting a commensal relationship. The study of this sponge meadow and its sclerobiont community allowed the identification of different stages of ecological succession. The pioneer stage was characterised by sponge settlement on oyster valves, within an otherwise soft consistency bottom. High sedimentation or high nutrient inputs, either individually or in combination, could explain the great abundance of oysters. During the climax stage, sponges thrived and harboured several sclerobiont taxa, developing a relatively dynamic palaeocommunity. Finally, an intensification in either sedimentation rates or nutrient input (or both) past the tolerable threshold for sponges may have been the cause(s) of the meadow's demise. Endostoma and similar forms were up to now reported mostly from the Jurassic and Cretaceous of Europe as accessory builders, or as accompanying fauna in reefal settings. This new record shows that in rare occasions they could form low-relief meadows on their own.

Type
Spontaneous Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10. References

Achlatis, M., van der Zande, R. M., Schönberg, C. H., Fang, J. K., Hoegh-Guldberg, O. & Dove, S. G. 2017. Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Scientific Reports 7, 10705–13.CrossRefGoogle Scholar
Afşar, F., Duda, J. P., Zeller, M., Verwer, K., Westphal, H. & Eberli, G. P. 2014. First report of sponge rhaxes in the Picún Leufú Formation, (Tithonian–Beriasian), Neuquén Basin, Argentina. Göttingen Contributions to Geosciences 77, 4956.Google Scholar
Aguirre-Urreta, M. B., Martinez, M., Schmitz, M., Lescano, M., Omarini, J., Tunik, M., Kuhnert, H., Concheyro, A., Rawson, P. F., Ramos, V. A., Reboulet, S., Frederichs, T., Nickl, A. L. & Pälike, H. 2019. Interhemispheric radio–astrochronological calibration of the time scales from the Andean and the Tethyan areas in the Valanginian–Hauterivian (Early Cretaceous). Gondwana Research 70, 104–32.CrossRefGoogle Scholar
Aguirre-Urreta, M. B., Mourgues, F. A., Rawson, P. F., Bulot, L. G. & Jaillard, E. 2007. The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geological Journal 42, 143–73.CrossRefGoogle Scholar
Aguirre-Urreta, M. B., Schmitz, M., Lescano, M., Tunik, M., Rawson, P. F., Concheyro, A., Buhler, M. & Ramos, V. A. 2017. A high precision U-Pb radioisotopic age for the Agrio Formation, Neuquén Basin, Argentina: implications for the chronology of the Hauterivian Stage. Cretaceous Research 75, 193204.CrossRefGoogle Scholar
Aguirre Urreta, M. B. 1989. The Cretaceous decapod Crustacea of Argentina and the Antarctic Peninsula. Palaeontology 32, 499552.Google Scholar
Alexander, R. A. & Scharpf, C. D. 1990. Epizoans on Late Ordovician brachiopods from southeastern Indiana. Historical Biology 4, 179202.CrossRefGoogle Scholar
Andrada, A. M., Lazo, D. G., Bressan, G. S. & Aguirre-Urreta, M. B. 2022. Revision of the genus Protaxius (Decapoda, Axiidea, Axiidae), with description of a new species from the Lower Cretaceous of west-central Argentina. Cretaceous Research 130, 105053.CrossRefGoogle Scholar
Aretz, M. 2010. Habitats of colonial rugose corals: the Mississippian of western Europe as example for a general classification. Lethaia 43, 558–72.CrossRefGoogle Scholar
Ávila, E. & Ortega Bastida, A. L. 2014. Influence of habitat and host morphology on macrofaunal assemblages associated with the sponge Halichondria melanadocia in an estuarine system of the southern Gulf of Mexico. Marine Ecology 36, 1345–53.CrossRefGoogle Scholar
Bell, J. J. 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79, 341–53.CrossRefGoogle Scholar
Beresi, S. M. 2007. Fossil sponges of Argentina: a review. In Custódio, M. R., Lôbo-Hadju, G., Hadju, E. & Muricy, G. (eds) Porifera Research: Biodiversity, Innovation and Sustainability, 1121. Rio de Janeiro: Museu Nacional (Brasil).Google Scholar
Beresi, M. S. & Rigby, J. K. 2013. Middle Cambrian protospongiid sponges and chancelloriids from the Precordillera of Mendoza Province, western Argentina. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 268, 259–74.CrossRefGoogle Scholar
Bocchino, A. 1977. Un nuevo Gyrodontidae (Pisces, Holostei, Pycnodontiformes) de la Formación Agrio (Cretácico Inferior) de la provincia de Neuquén, Argentina [A new Gyrodontidae (Pisces, Holostei, Pycnodontiformes) from the Agrio Formation (Lower Cretaceous) of Neuquén province, Argentina]. Ameghiniana 14, 175–85. [In Spanish.]Google Scholar
Bonuso, N., Stone, T. & Williamson, K. 2020. Upper Triassic (Carnian) sponge reef mounds from South Canyon, central Nevada. Facies 66, 16.CrossRefGoogle Scholar
Bowerbank, J. S. 1864. A Monograph of the British Spongiadae, 1. London: Ray Society, 290 p.Google Scholar
Brunton, F. R. & Dixon, O. A. 1994. Siliceous sponge–microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors. Palaios 9, 370–87.CrossRefGoogle Scholar
Carrera, M. G. 1997a. Evolución y recambio de la fauna de poríferos y Briozoos en el Ordovícico de la Precordillera Argentina [Evolution and turnover of the poriferous and bryozoan fauna in the Ordovician of the Argentine Precordillera]. Ameghiniana 34, 295308. [In Spanish.]Google Scholar
Carrera, M. G. 1997b. Análisis paleoecológico de la fauna de poríferos del Llanvirniano tardío de la Precordillera Argentina [Palaeoecological analysis of the poriferous fauna of the late Llanvirnian of the Argentine Precordillera]. Ameghiniana 34, 309–16. [In Spanish.]Google Scholar
Carrera, M. G. 2000. Epizoan–sponge interactions in the early Ordovician of the Argentine Precordillera. Palaios 15, 261–72.2.0.CO;2>CrossRefGoogle Scholar
Carrera, M. G. 2003. Sponges and bryozoans. In Benedetto, J. L. (ed.) Ordovician Fossils of Argentina, 155–86. Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba, Córdoba.Google Scholar
Carrera, M. G., Rustán, J. J., Vaccari, N. E. & Ezpeleta, M. 2018. Mississippian hexactinellid sponge from Western Gondwana: taxonomic and paleobiogeographic implications. Acta Palaeontologica Polonica 63, 6370.CrossRefGoogle Scholar
Cataldo, C. S. & Lazo, D. G. 2012. Resdescription of Pleurotomaria gerthi Weaver, 1931 (Gastropoda, Vetigastropoda), from the Early Cretaceous of Argentina: new data on its age, associated palaeoenvironments and palaeobiogeographic affinities. Ameghiniana 49, 7595.CrossRefGoogle Scholar
Cónsole-Gonella, C. & Marquillas, R. A. 2014. Bioclaustration trace fossils in epeiric shallow marine stromatolites: the Cretaceous–Palaeogene Yacoraite Formation, Northwestern Argentina. Lethaia 47, 107–19.CrossRefGoogle Scholar
de Laubenfels, M. W. 1955. Porifera. In Moore, R. C. (ed.) Treatise on Invertebrate Paleontology. Part E, Archaeocyatha and Porifera, 21112 Boulder & Kansas: The Geological Society of America, Inc. and The University of Kansas.Google Scholar
Díaz, M. C. & Rützler, K. 2001. Sponges: an essential component of Caribbean reefs. Bulletin of Marine Science 69, 535–46.Google Scholar
Diaz, M. C. 2012. Mangrove and coral reef sponge faunas: untold stories about shallow water Porifera in the Caribbean. In Maldonado, M., Turon, X., Becerro, M. & Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, 179–90. Dordrecht: Springer.Google Scholar
Dieci, G., Antonacci, A. & Zardini, R. 1968. Le spugne cassiane (Trias medio-superiore) della regione dolomitica attorno a Cortina d'Ampezzo [The Cassian sponges (Middle–Upper Trias) of the Dolomite region around Cortina d'Ampezzo]. Bollettino della Societa Paleontologica Italiana 7, 94–15. [In Italian.]Google Scholar
Di Paola, E. 1990. Microfacies de la Formación Agrio. Petrografía y diagénesis [Microfacies of the Agrio Formation. Petrography and diagenesis]. Revista de la Asociación Geológica Argentina 65, 260–71. [In Spanish.]Google Scholar
Étallon, A. 1859. Études paléontologiques sur le Haut-Jura. Rayonnés du Corallien [Palaeontological studies on the Haut-Jura. Radiated from the Corallian]. Mémoires de la Société d’Émulation du département du Doubs 3, 401553. [In French.]Google Scholar
Étallon, A. 1860. Sur les rayonnés des terrains jurassiques supérieurs de environs de Montbéliard [On the rays of the upper Jurassic terrains around Montbéliard]. Compte-rendu de la situation et des travaux de la Société d’Émulation de Montbéliard 3, 2358. [In French.]Google Scholar
Finks, R. M. & Rigby, J. K. 2004. Hypercalcified sponges. In Kaesler, R. L. (ed.) Treatise on Invertebrate Paleontology, Part E, Porifera (revised), vol. 3. 585764. Boulder & Kansas: The Geological Society of America, Inc. and The University of Kansas.Google Scholar
Fürsich, F. T. & Werner, W. 1991. Palaeoecology of coralline sponge–coral meadows from the Upper Jurassic of Portugal. Palaeontologische Zeitschrift 65, 3569.CrossRefGoogle Scholar
Garberoglio, R. M. 2019. Estudio de los corales escleractínidos del Cretácico Temprano de la Cuenca Neuquina, centro-oeste de Argentina (dissertation) [Study of scleractinid corals from the Early Cretaceous of the Neuquén Basin, central-western Argentina]. Buenos Aires: Universidad de Buenos Aires. [In Spanish.]Google Scholar
Garberoglio, R. M., Lazo, D. G. & Palma, R. M. 2013. An integrate analysis of an Hauterivian coral biostrome from the Agrio Formation, Neuquén Basin, west-central Argentina. Cretaceous Research 43, 97115.CrossRefGoogle Scholar
Goldfuss, G. A. 1829. Petrefacta Germaniae [The Petrification of Germany], 165240. Düsseldorf: Arnz & Comp. [In Latin.]Google Scholar
Gouiric-Cavalli, S., Remírez, M. & Kriwet, J. 2019. New pycnodontiform fishes (Actinopterygii, Neopterygii) from the Early Cretaceous of the Argentinian Patagonia. Cretaceous Research 94, 4558.CrossRefGoogle ScholarPubMed
Gundrum, L. E. 1979. Demosponges as substrates: an example from the Pennsylvanian of North America. Lethaia 12, 105–19.CrossRefGoogle Scholar
Hinde, G. J. 1883. Catalogue of the Fossil Sponges in the Geological Department of the British Museum (Natural History) with Descriptions of New and Little-Known Species. London: Taylor and Francis, 248 pp.Google Scholar
Hinde, G. J. 1884. Catalogue of the Fossil Sponges in the Geological Department of the British Museum (Natural History). London: Taylor and Francis, 348 p.Google Scholar
Hinde, G. J. 1893. A Monograph of the British Fossil Sponges, Part III. Sponges of the Jurassic Strata, 189254. London: The Palaeontographical Society.Google Scholar
Hurcewicz, H. 1975. Calcispongea from the Jurassic of Poland. Acta Palaeontologica Polonica 20, 223304.Google Scholar
Kauffman, E. G., Herm, D., Johnson, C. C., Harries, P. & Höfling, R. 2000. The ecology of Cenomanian lithistid sponge frameworks, Regensburg area, Germany. Lethaia 33, 214–35.CrossRefGoogle Scholar
Keeping, W. 1883. The Fossils and Palaeontological Affinities of the Neocomian Deposits of Upware and Brickhill (Cambridge and Berfordshire). Cambridge: Cambridge University Press, 167 pp.Google Scholar
Keough, M. J. 1984. Effects of patch size on the abundance of sessile marine invertebrates. Ecology 65, 423–37.CrossRefGoogle Scholar
Lazo, D. G. 2007a. Análisis de biofacies y cambios relativos del nivel del mar en el Miembro Pilmatué de la Formación Agrio, Cretácico Inferior de cuenca Neuquina, Argentina [Analysis of biofacies and relative changes in sea level in the Pilmatué Member of the Agrio Formation, Lower Cretaceous of the Neuquén Basin, Argentina]. Ameghiniana 44, 7389. [In Spanish.]Google Scholar
Lazo, D. G. 2007b. Early Cretaceous bivalves of the Neuquén Basin, west-central Argentina: notes on taxonomy, palaeobiogeography and palaeoecology. Geological Journal 42, 127–42.CrossRefGoogle Scholar
Lazo, D. G., Cichowolski, M., Rodríguez, D. L. & Aguirre-Urreta, M. B. 2005. Lithofacies, palaeocology and palaeoenvironments of the Agrio Formation, Lower Cretaceous of the Neuquén Basin, Argentina. In Veiga, G., Spalletti, L. A., Howell, J. & Schwarz, E. (eds) The Neuquén Basin: a Case Study in Sequence Stratigraphy and Basin Dynamics, Special Publication 252, 295315. London: Geological Society of London.Google Scholar
Leanza, H. A. & Hugo, C. A. 1997. Hoja geológica 3969-III, Picún Leufú. Provincia del Neuquén [Geological Sheet 3969-III, Picún Leufú. Neuquen Province]. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 218, 135 pp. [In Spanish.]Google Scholar
Leanza, H. A., Hugo, C. A. & Repol, D. 2001. Hoja geológica 3969-I, Zapala. Provincia del Neuquén [Geological sheet 3969-I, Zapala. Neuquen Province]. Instituto de Geología y Recursos Minerales. Servicio Geológico Minero Argentino, Boletín 275, 128 pp. [In Spanish.]Google Scholar
Leinfelder, R. R. 1992. A modern-type Kimmeridgian reef (Ota Limestone, Portugal): implications for Jurassic reef models. Facies 26, 1134.CrossRefGoogle Scholar
Lescano, M. & Concheyro, A. 2014. Nanocónidos del Grupo Mendoza (Cretácico Inferior) en la provincia del Neuquén, República Argentina: taxonomía, cronoestratrigrafía e implicancias paleogeográficas [Nannoconids of the Mendoza Group (Lower Cretaceous) in Neuquén province, Argentine Republic: taxonomy, chronostratrigraphy and paleogeographic implications]. Ameghiniana 51, 466–99. [In Spanish.]CrossRefGoogle Scholar
Loh, T. L. & Pawlik, J. R. 2009. Bitten down to size: fish predation determines growth form of the Caribbean coral reef sponge Mycale laevis. Journal of Experimental Marine Biology and Ecology 374, 4550.CrossRefGoogle Scholar
Luci, L. & Cichowolski, M. 2014. Encrustation in nautilids: a case study in the Cretaceous species Cymatoceras perstriatum, Neuquén Basin, Argentina. Palaios 29, 101–20.CrossRefGoogle Scholar
Luci, L., Cichowolski, M. & Aguirre-Urreta, M. B. 2016. Sclerobionts, shell morphology and biostratinomy on ammonites: two Early Cretaceous cases from the Neuquén Basin, Argentina. Palaios 31, 4154.CrossRefGoogle Scholar
Luci, L., Garberoglio, R. M., Manceñido, M. O. & Lazo, D. G. 2015. Análisis paleoecológico de las faunas esclerobiontes en corales de la Formación Agrio, Cretácico Inferior de Cuenca Neuquina [Palaeoecological analysis of the sclerobiont faunas in corals from the Agrio Formation, Lower Cretaceous of the Neuquén Basin]. Reunión de Comunicaciones de la Asociación Paleontológica Argentina. Libro de Resúmenes 20, 62–3. [In Spanish.]Google Scholar
Luci, L. & Lazo, D. G. 2015. Living on an island: characterization of the encrusting fauna of large pectinid bivalves from the Lower Cretaceous of the Neuquén Basin, west-central Argentina. Lethaia 48, 205–26.CrossRefGoogle Scholar
Luci, L., Toscano, A. G. & Lazo, D. G. 2019. Palaeoecological analysis of a sclerobiont fauna on a single basibiont across the Valanginian of the Neuquén Basin, west-central Argentina. Lethaia 52, 523–49.CrossRefGoogle Scholar
Maldonado, M., Aguilar, R., Bannister, R. J., Bell, J. J., Conway, K. W., Dayton, P. K., Díaz, C., Gutt, J., Kelly, M., Kenchington, E. L. R., Leys, S. P., Pomponi, S. A., Rapp, H. T., Rützler, K., Tendal, O. S., Vacelet, J. & Young, C. M. 2017. Sponge grounds as key marine habitats: a synthetic review of types, structure, functional roles, and conservation concerns. In Rossi, S., Bramanti, L., Gori, A. & Orejas Saco del Valle, C. (eds) Marine Animal Forests, 139. Cham: Springer.Google Scholar
Maldonado, M., Aguilar, R., Blanco, J., García, S., Serrano, A. & Punzón, A. 2015. Aggregated clumps of lithistid sponges: a singular, reef-like bathyal habitat with relevant paleontological connections. PLOS ONE 10, e0125378.CrossRefGoogle ScholarPubMed
Masse, J. P. & Termier, G. 1992. Les Spongiaires du Crétacé inférieur (Hauterivien-Aptien inférieur) de Provence (SE de la France). Géologie méditerranéenne 19, 89123.CrossRefGoogle Scholar
Morrow, C. & Cárdenas, P. 2015. Proposal for a revised classification of the Demospongiae (Porifera). Frontiers on Zoology 12, 127.CrossRefGoogle ScholarPubMed
Müller, W. 1984. Die Kalkschwämme der Unterordnung Inozoa Steinmann aus dem Oberen Jura von Württemberg (SW-Deutschland) [The calcareous sponges of the suborder Inozoa Steinmann from the Upper Jurassic of Württemberg (SW Germany)]. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 100, 185. [In German.]Google Scholar
Münster, G. 1829. Zoophytorum Reliquiae [Relics of zoophytes]. In Goldfuss, G. A. (ed.) Petrefacta Germaniae [The petrification of Germany], 1114. Düsseldorf: Arnz & Comp. [In Latin.]Google Scholar
Musacchio, E. A. & Simeoni, M. 2008. Valanginian and Hauterivian marine ostracods from Patagonia: correlations and palaeogeography. Revue de Micropaleontologie 51, 239–57.CrossRefGoogle Scholar
Naipauer, M., García Morabito, E., Marques, J. C., Tunik, M., Rojas Vera, E. A., Vujovich, G. I., Pimentel, M. P. & Ramos, V. A. 2012. Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface data and U–Pb detrital zircon ages. Tectonophysics 524–525, 5975.CrossRefGoogle Scholar
Oppliger, F. 1929. Die Kalkschwarnme des Schweizerischen Jura [The limestone swamps of the Swiss Jura]. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft 48, 131. [In German.]Google Scholar
Osman, R. W. 1977. The establishment and development of a marine epifaunal community. Ecological Monographs 47, 3763.CrossRefGoogle Scholar
Palmer, T. J. & Fürsich, F. T. 1981. Ecology of sponge reefs from the Upper Bathonian of Normandy. Palaeontology 24, 123.Google Scholar
Palumbi, S. R. 1984. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225, 1478–80.CrossRefGoogle Scholar
Pisera, A. 2006. Palaeontology of sponges – a review. Canadian Journal of Zoology 84, 242–61.CrossRefGoogle Scholar
Quenstedt, F. A. 1876–78. Petrefactenkunde Deutschlands. Erste Abteilung, fünfter Band. Korallen. Die Schwämme [Petrefactology of Germany. First section, fifth volume. corals. The sponges]. Leipzig: Fues's Verlag, 612 pp. [In German.]Google Scholar
Ramos, V. A., Folguera, A. & García Morabito, E. 2011. Las provincias geológicas del Neuquén [The geological provinces of Neuquén]. In Leanza, H. A., Arregui, C., Carbone, O., Danieli, J. C. & Vallés, J. M. (eds.) Geología y Recursos Naturales del Neuquén, Relatorio XVIII Congreso Geológico Argentino [Geology and Natural Resources of Neuquén, Report XVIII Argentine Geological Congress], 317–26. [In Spanish.] Asociación Geológica Argentina, Buenos Aires.Google Scholar
Reboulet, S., Szives, O., Aguirre-Urreta, M. B., Barragán, R., Company, M., Idakieva, V., Ivanov, M., Kakabadze, M. V., Moreno-Bedmar, J. A., Sandoval, J., Baraboshkin, E. J., Çaglar, M. K., Fözy, I., González-Arreola, C., Kenjo, S., Lukeneder, A., Raisossadat, S. N., Rawson, P. F. & Tavera, J. M. 2014. Report on the 5th international meeting of the IUGS Lower Cretaceous ammonite working group, the “Kilian Group” (Ankara, Turkey, 31st August 2013). Cretaceous Research 50, 126–37.CrossRefGoogle Scholar
Reid, R. E. H. 1968. Tremacystia, Barroisia, and the status of Sphinctozoida (Thalamida) as Porifera. The University of Kansas Paleontological Contributions 18, 10 pp.Google Scholar
Reitner, J. 1989. Lower and Mid-Cretaceous coralline sponge communities of the Boreal and Tethyan realms in comparison with the modem ones – palaeoecological and palaeogeographic implications. In Wiedmann, J. (ed.), Cretaceous of the Western Tethys. Proceedings 3rd International Cretaceous Symposium, Tübingen 1987, 851–78. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Rigby, J. K. & Senowbari-Daryan, B. 1996. Uppper Permian Inozoid, Demospongid, and Hexactinellid sponges from Djebej Tebaga, Tunisia. The University of Kansas Paleontological Contributions, New Series 7, 1215.Google Scholar
Roemer, F. A. 1864. Die Spongitarien des Norddeutschen Kreide-Gebirges [The spongitaria of the North German Chalk Mountains], 163. Kassel: Verlag von Theodor Fischer. [In German.]Google Scholar
Rützler, K. 1975. The role of burrowing sponges in bioerosion. Oecologia 19, 203–19.CrossRefGoogle ScholarPubMed
Sagasti, G. & Ballent, S. 2002. Microfaunal features of a marine transgression: the Agrio Formation (Lower Cretaceous), Neuquén Basin, Argentina. Geobios 35, 721–34.CrossRefGoogle Scholar
Senowbari-Daryan, B., Fürsich, F. T. & Rashidi, K. 2020. Sponges from the Jurassic of the Shotori Mountains Part III. Endostoma Roemer, Eudea Lamouroux, Pareudea Étallon, Preperonidella Finks & Rigby, Polyendostoma Roemer, Seriespongia n. gen., and Iniquispongia n. gen. Revue de Paléobiologie 39, 265301.Google Scholar
Senowbari-Daryan, B. & García-Bellido, D. C. 2002. † Fossil ‘Sphinctozoa’: chambered sponges (Polyphyletic). In Hooper, J. N. A. & Van Soest, W. N. (eds) Systema Porifera: A Guide to the Classification of Sponges, 1511–34. Dodrecht: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Somoza, R. 2011. The Late Cretaceous paleomagnetic field in North America: a South American perspective. Canadian Journal of Earth Sciences 48, 1483–8.CrossRefGoogle Scholar
Stahl, K. F. 1824. Übersicht über die Versteinerungen Würtembergs nach dem gegenwärtigen Standpunkte der Petrefaktenkunde. Correspondenzblatt der Königlich Würtembergerischen Landwirthschaftliche Vereins [Overview of the fossils of Würtemberg according to the current point of view of petrefacts. Correspondence sheet of the Royal Würtemberg Agricultural Association], 82–85. Tübingen: Cotta. [In German.]Google Scholar
Svennevig, K. & Surlyk, F. 2019. A high-stress shelly fauna associated with sponge mud-mounds in the Coniacian Arnager Limestone of Bornholm, Denmark. Lethaia 52, 5776.CrossRefGoogle Scholar
Taylor, P. D. 1990. Preservation of soft-bodied and other organisms by bioimmuration – a review. Palaeontology 33, 117.Google Scholar
Taylor, M. W., Radax, R., Steger, D. & Wagner, M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71, 295347.CrossRefGoogle ScholarPubMed
Taylor, P. D. & Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrates. Earth-Science Reviews 62, 1103.CrossRefGoogle Scholar
Toscano, A. G. & Lazo, D. G. 2020. Taxonomic revision and palaeobiogeographic affinities of Berriasian–Valanginian oysters from the Vaca Muerta and Mulichinco formations, southern Mendoza, Neuquén Basin, Argentina. Cretaceous Research 109, 104358.CrossRefGoogle Scholar
Toscano, A. G., Lazo, D. G. & Luci, L. 2018. Taphonomy and paleoecology of Lower Cretaceous oyster mass occurrences from west-central Argentina and evolutionary paleoecology of gregariousness in oysters. Palaios 33, 119.CrossRefGoogle Scholar
Toscano, A. G., Luci, L., Cataldo, C. S. & Lazo, D. G. 2021. Boring traces on oysters from the Lower Cretaceous (Berriasian–lower Valanginian) of the Neuquén Basin, west-central Argentina: first records of boring polychaetes, acrothoracic cyrripeds and predatory interactions. Third Palaeontological Virtual Congress, Book of Abstracts 228.Google Scholar
Vacelet, J., Willenz, P. & Hartman, W. D. 2010. Part E, revised, volume 4, chapter 1: living hypercalcified sponges. Treatise Online 1, 116.Google Scholar
Weaver, C. E. 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. Memoirs of the University of Washington 1, 1595.Google Scholar
Webby, B. D., Debrenne, F., Kershaw, S., Kruse, P. D., Nestor, H., Rigby, J. K., Senowbari-Daryan, B., Stearn, C. W., Stock, C. W., Vacelet, J., West, R. R., Willenz, P., Wood, R. A. & Zhuravlev, A. Y. 2010. Part E, revised, volume 4, chapter 8: glossary of terms applied to the hypercalcified Porifera. Treatise Online 4, 121.Google Scholar
Werner, W., Leinfelder, R., Fürsich, F. T. & Krautter, M. 1994. Comparative palaeoecology of marly coralline sponge-bearing reefal associations from the Kimmeridgian (Upper Jurassic) of Portugal and Southwestern Germany. Courier Forschungsinstitut Senckenberg 172, 381–97.Google Scholar
Wilson, M. A., Feldman, H. R. & Belding Krivicich, E. 2010. Bioerosion in an equatorial Middle Jurassic coral–sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 289, 93101.CrossRefGoogle Scholar
Wilson, M. A., Feldman, H. R., Bowen, J. C. & Avni, Y. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (Late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology Palaeoecology 263, 24–9.CrossRefGoogle Scholar
Wood, R. 1990. Reef-building sponges. American Scientist 78, 224–35.Google Scholar
Wulff, J. L. 2006. Ecological interactions of marine sponges. Canadian Journal of Zoology 84, 146–66.CrossRefGoogle Scholar
Wulff, J. L. 2016. Sponge contributions to geology and biology of reefs: past, present and future. In Hubbard, D. K., Rogers, C. S., Lipps, J. H. & Stanley, G. D. Jr. (eds) Coral Reefs at the Crossroads, Coral Reefs of the World 6, 103–26. Dordrecht: Springer Science + Business Media. DOI 10.1007/978-94-017-7567-0_5.CrossRefGoogle Scholar
Zittel, K. A. 1878. Studien über fossile spongien 2. Lithistidae [Studies on fossil spongia 2. Lithistidae]. Abhandlungen der Mathematisch-Physikalischen Classe der Königlich Bayerischen Akademie der Wissenschaften 13, 65154. [In German.]Google Scholar
Zittel, K. A. 1880. Studien über fossile Spongien 3. Monactinellidae, Tetractinellidae und Calcispongie [Studies on fossil spongia 3. Monactinellidae, Tetractinellidae and Calcispongie]. Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften 13, 148. [In German.]Google Scholar