No CrossRef data available.
Published online by Cambridge University Press: 06 July 2012
§ 1. In a communication read before the Society, 3rd December 1900, Dr Muir discusses the generalisation, for more than two pairs of variables, of the proposition that: If
then
If we interpret (x, y) and (ξ, η) iis points in a plane, it is manifest that the transformation thereby obtained is a Cremona transformation. It has the special property of being reciprocal or involutive in character; i.e., if the point P is transformed into Q, then the repetition of the same transformation on Q transforms Q into P. Symbolically, if the transformation is denoted by T. T(P) = Q, and T(Q) = T2(P) = P; so that T2 = 1, and T = T−1. Moreover, if the locus of P (x, y) is a straight line, the locus of Q (ξ, η) is in general a conic.