Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T22:47:41.679Z Has data issue: false hasContentIssue false

Theoretical inversion of the fossil hydrothermal systems with oxygen isotopes of constituent minerals partially re-equilibrated with externally infiltrated fluids

Published online by Cambridge University Press:  30 June 2021

Chun-Sheng WEI*
Affiliation:
CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei230026, China.
Zi-Fu ZHAO
Affiliation:
CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei230026, China.
*
*Corresponding author. Email: [email protected]

Abstract

While the external infiltration of water has been identified from modern geothermal and/or fossil hydrothermal systems through stable isotopes, the physicochemical boundary conditions like the initial oxygen isotopes of water $( {{\rm \delta }^{ 18}{\rm O}_{\rm W}^{\rm i} } ) $ and rock as well as alteration temperature were implicitly presumed or empirically estimated by the conventional forward modelling. In terms of a novel procedure proposed to deal with partial re-equilibration of oxygen isotopes between constituent minerals and water, the externally infiltrated meteoric and magmatic water are theoretically inverted from the early Cretaceous post-collisional granitoid and intruded Triassic gneissic country rock across the Dabie orogen in central-eastern China. The meteoric water with a $ {{\rm \delta }^{ 18}{\rm O}_{\rm W}^{\rm i} } $ value of −11.01 ‰ was externally infiltrated with a granitoid and thermodynamically re-equilibrated with rock-forming minerals at 140°C with a minimum water/rock (W/R)o ratio around 1.10 for an open system. The lifetime of this meteoric hydrothermal system is kinetically constrained less than 0.7 million years (Myr) via modelling of surface reaction oxygen exchange. A gneissic country rock, however, was externally infiltrated by a magmatic water with $ {{\rm \delta }^{ 18}{\rm O}_{\rm W}^{\rm i} } $ value of 4.21 ‰ at 340°C with a (W/R)o ratio of 1.23, and this magmatic hydrothermal system could last no more than 12 thousand years (Kyr) to rapidly re-equilibrate with rock-forming minerals. Nevertheless, the external infiltration of water can be theoretically inverted with oxygen isotopes of re-equilibrated rock-forming minerals, and the ancient hydrothermal systems driven by magmatism or metamorphism within continental orogens worldwide can be reliably quantified.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

11. References

Ames, L., Zhou, G. Z. & Xiong, B. C. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15, 472–89.CrossRefGoogle Scholar
Anthony, J. W., Bideaux, R. A., Bladh, K. W. & Nichols, M. C. 2021. Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org.Google Scholar
Bryant, D. L., Ayers, J. C., Gao, S., Miller, C. F. & Zhang, H. F. 2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of America Bulletin 116, 698717.CrossRefGoogle Scholar
Cheng, H., Zhang, C., Vervoort, J. D., Wu, Y. B., Zheng, Y. F., Zheng, S. & Zhou, Z. Y. 2011. New Lu-Hf geochronology constrains the onset of continental subduction in the Dabie orogen. Lithos 121, 4154.CrossRefGoogle Scholar
Cole, D. R., Ohmoto, H. & Jacobs, G. K. 1992. Isotopic exchange in mineral-fluid systems: III. Rates and mechanisms of oxygen isotope exchange in the system granite-H2O ± NaCl ± KC1 at hydrothermal conditions. Geochimica et Cosmochimica Acta 56, 445–66.CrossRefGoogle Scholar
Cole, D. R., Ohmoto, H. & Lasaga, A. C. 1983. Isotopic exchange in mineral-fluid systems. I. Theoretical evaluation of oxygen isotopic exchange accompanying surface reactions and diffusion. Geochimica et Cosmochimica Acta 47, 1681–93.CrossRefGoogle Scholar
Criss, R. E. & Taylor, H. P. Jr. 1986. Meteoric-hydrothermal systems. Reviews in Mineralogy 16, 373424.Google Scholar
Dai, L. Q., Zhao, Z. F. & Zheng, Y. F. 2015. Tectonic development from oceanic subduction to continental collision: geochemical evidence from postcollisional mafic rocks in the Hong'an-Dabie orogens. Gondwana Research 27, 1236–54.CrossRefGoogle Scholar
Deng, X., Yang, K. G., Polat, A., Kusky, T. M. & Wu, K. B. 2014. Zircon U-Pb ages, major and trace elements, and Hf isotope characteristics of the Tiantangzhai granites in the North Dabie orogen, Central China: tectonic implications. Geological Magazine 151, 916–37.CrossRefGoogle Scholar
Ernst, W. G., Tsujimori, T., Zhang, R. Y. & Liou, J. G. 2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annual Review in Earth and Planetary Sciences 35, 73110.CrossRefGoogle Scholar
Fortier, S. M. & Giletti, B. J. 1989. An empirical model for predicting diffusion coefficients in silicate minerals. Science (New York, N.Y.) 245, 1481–84.CrossRefGoogle ScholarPubMed
Fu, B., Kita, N. T., Wilde, S. A., Liu, X. C., Cliff, J. & Greig, A. 2013. Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ18O igneous province, east-central China. Contributions to Mineralogy and Petrology 165, 641–62.CrossRefGoogle Scholar
Giletti, B. J., Semet, M. P. & Yund, R. A. 1978. Studies in diffusion – III. Oxygen in feldspars: an ion microprobe determination. Geochimica et Cosmochimica Acta 42, 4557.CrossRefGoogle Scholar
Giletti, B. J. & Yund, R. A. 1984. Oxygen diffusion in quartz. Journal of Geophysical Research 89, 4039–46.CrossRefGoogle Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D. & Dong, S. W. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters 161, 215–30.CrossRefGoogle Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., McWilliams, M. O., Ireland, T., Calvert, A., Dong, S. W., Wenk, H. R. & Chateigner, D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research 105, 13339–64.CrossRefGoogle Scholar
He, Y. S., Li, S. G., Hoefs, J. & Kleinhanns, I. C. 2013. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: constraints on the recycled lower continental crust. Lithos 156–159, 204–17.CrossRefGoogle Scholar
Hellmann, R. & Wood, S. A. 2002. Water-rock interactions, ore deposits, and environmental geochemistry: A tribute to David A. Crerar. Geochemical Society Special Publication 7, 1462.Google Scholar
Henley, R. W., Truesdell, A. H., Barton, P. B. Jr. & Whitney, J. A. 1984. Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology 1, 1267.Google Scholar
Hochella, M. F. Jr. & White, A. F. 1990. Mineral-water interface geochemistry. Reviews in Mineralogy 23, 1603.Google Scholar
Holk, G. J., Taylor, H. P. Jr. & Gromet, L. P. 2006. Stable isotope evidence for large-scale infiltration of metamorphic fluids generated during shallow subduction into the Eastern Peninsular Ranges Mylonite Zone (EPRMZ), Southern California. International Geology Review 48, 209–22.CrossRefGoogle Scholar
Holk, G. J. & Taylor, H. P. Jr. 2007. 18O/16O evidence for contrasting hydrothermal regimes involving magmatic and meteoric-hydrothermal waters at the Valhalla metamorphic core complex, British Columbia. Economic Geology 102, 1063–78.CrossRefGoogle Scholar
Holt, E. W. & Taylor, H. P. Jr. 1998. 18O/16O mapping and hydrogeology of a short-lived (≈ 10 years) fumarolic (> 500°C) meteoric-hydrothermal event in the upper part of the 0.76 Ma Bishop Tuff outflow sheet, California. Journal of Volcanology and Geothermal Research 83, 115–39.CrossRefGoogle Scholar
Jahn, B.-M., Conichet, J., Cong, B. L. & Yui, T. F. 1996. Ultrahigh-ɛNd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology 127, 6179.CrossRefGoogle Scholar
Jahn, B.-M., Wu, F. Y., Lo, C. H. & Tsai, C. H. 1999. Crustal-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157, 119–46.CrossRefGoogle Scholar
King, E. M., Barrie, C. T. & Valley, J. W. 1997. Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: magmatic values are preserved in zircon. Geology 25, 1079–82.2.3.CO;2>CrossRefGoogle Scholar
Li, S. G., Jagoutz, E., Chen, Y. Z. & Li, Q. L. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta 64, 1077–93.CrossRefGoogle Scholar
Li, S. G., Xiao, Y. L., Liu, D. L., Chen, Y. Z., Ge, N. J., Zhang, Z. Q., Sun, S.-S., Cong, B. L., Zhang, R. Y., Hart, S. R. & Wang, S. S. 1993. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: timing and processes. Chemical Geology 109, 89111.CrossRefGoogle Scholar
Liu, D. Y., Jian, P., Kroner, A. & Xu, S. T. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters 250, 650–66.CrossRefGoogle Scholar
Ma, C. Q., Li, Z. C., Ehlers, C., Yang, K. G. & Wang, R. J. 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos 45, 431–56.CrossRefGoogle Scholar
Matthews, A., Goldsmith, J. R. & Clayton, R. N. 1983. On the mechanisms and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures. Geological Society of America Bulletin 94, 396412.2.0.CO;2>CrossRefGoogle Scholar
Nabelek, P. I., Labotka, T. C., O'Neil, J. R. & Papike, J. J. 1984. Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestones in western Utah: evidence from stable isotopes and phase assemblages. Contributions to Mineralogy and Petrology 86, 2534.CrossRefGoogle Scholar
Oelkers, E. H. & Schott, J. 2009. Thermodynamics and kinetics of water-rock interaction. Reviews in Mineralogy and Geochemistry 70, 1569.CrossRefGoogle Scholar
Rowley, D. B., Xue, F., Tucker, R. D., Peng, Z. X., Baker, J. & Davis, A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the Central Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters 155, 191203.CrossRefGoogle Scholar
Rumble, D., Giorgis, D., Oreland, T., Zhang, Z. M., Xu, H. F., Yui, T. F., Yang, J. S., Xu, Z. Q. & Liou, J. G. 2002. Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu province, China. Geochimica et Cosmochimica Acta 66, 2299–306.CrossRefGoogle Scholar
Sheppard, S. M. F. 1981. Stable isotope geochemistry of fluids. Physics and Chemistry of the Earth 13–14, 419–45.CrossRefGoogle Scholar
Sheppard, S. M. F. 1986. Characterization and isotopic variations in natural waters. Reviews in Mineralogy 16, 165–83.Google Scholar
Spencer, R. J. & Chou, I.-M. 1990. Fluid-mineral interactions: A tribute to H. P. Eugster. Geochemical Society Special Publication 2, 1432.Google Scholar
Spicuzza, M. J., Valley, J. W. & McConnell, V. S. 1998. Oxygen isotope analysis of whole rock via laser fluorination: an air lock approach. Geological Society of America Abstracts with Programs 30, A80.Google Scholar
Taylor, B. E. & O'Neil, J. R. 1977. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood mountains, Nevada. Contributions to Mineralogy and Petrology 63, 149.CrossRefGoogle Scholar
Taylor, H. P. Jr. 1971. Oxygen isotope evidence for large-scale interaction between meteoric ground waters and Tertiary granodiorite intrusions, Western Cascade Range, Oregon. Journal of Geophysical Research 76, 7855–74.CrossRefGoogle Scholar
Taylor, H. P. Jr. 1977. Water/rock interactions and the origin of H2O in granitic batholiths. Journal of Geological Society of London 133, 509–58.CrossRefGoogle Scholar
Taylor, H. P. Jr., O'Neil, J. R. & Kaplan, I. R. 1991. Stable isotope geochemistry: A tribute to Samuel Epstein. Geochemical Society Special Publication 3, 1516.Google Scholar
Taylor, H. P. Jr. & Forester, R. W. 1979. An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55 m.y. old fossil hydrothermal system. Journal of Petrology 20, 355419.CrossRefGoogle Scholar
Turi, B. & Taylor, H. P. Jr. 1971. O18/O16 ratios of the Johnny Lyon granodiorite and Texas Canyon quartz monzonite plutons, Arizona, and their contact aureoles. Contributions to Mineralogy and Petrology 32, 138–46.CrossRefGoogle Scholar
Valley, J. W. 2003. Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry 53, 343–85.CrossRefGoogle Scholar
Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. 1998. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology 133, 111.CrossRefGoogle Scholar
Valley, J. W., Kitchen, N. E., Kohn, M. J., Niendorf, C. R. & Spicuzza, M. J. 1995. UWG-2, A garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating. Geochimica et Cosmochimica Acta 59, 5223–31.CrossRefGoogle Scholar
Valley, J. W., Taylor, H. P. Jr. & O'Neil, J. R. 1986. Stable isotopes in high temperature geological processes. Reviews in Mineralogy 16, 1570.Google Scholar
Valley, J. W. & Graham, C. M. 1996. Ion microprobe analysis of oxygen isotope ratios in quartz from Skye granite: healed micro-cracks, fluid flow, and hydrothermal exchange. Contributions to Mineralogy and Petrology 124, 225–34.CrossRefGoogle Scholar
Valley, J. W. & Cole, D. R. 2001. Stable Isotopes Geochemistry. Reviews in Mineralogy and Geochemistry 43, 1662.Google Scholar
Walther, J. V. & Wood, B. J. 1986. Fluid-Rock interactions during metamorphism. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1218.CrossRefGoogle Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Jian, P., Zhao, Z. H., Li, C. F., Xu, W. X., Ma, J. L. & He, B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta 71, 2609–36.CrossRefGoogle Scholar
Wang, X. M., Liou, J. G. & Mao, H. K. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology 17, 1085–88.2.3.CO;2>CrossRefGoogle Scholar
Watson, E. B. & Cherniak, D. J. 1997. Oxygen diffusion in zircon. Earth and Planetary Science Letters 148, 527–44.CrossRefGoogle Scholar
Wei, C. S., Zhao, Z. F. & Spicuzza, M. J. 2008. Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China. Chemical Geology 250, 115.CrossRefGoogle Scholar
Wei, C. S. & Zhao, Z. F. 2017. Dual sources of water overprinting on the low zircon δ18O metamorphic country rocks: disequilibrium constrained through inverse modelling of partial reequilibration. Scientific Reports 7, 40334.CrossRefGoogle ScholarPubMed
Wickham, S. M., Peters, M. T., Fricke, H. C. & O'Neil, J. R. 1993. Identification of magmatic and meteoric fluid sources and upward- and downward-moving infiltration fronts in a metamorphic core complex. Geology 21, 81–4.2.3.CO;2>CrossRefGoogle Scholar
Wickham, S. M. & Taylor, H. P. Jr. 1985. Stable isotopic evidence for large-scale seawater infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 91, 122–37.CrossRefGoogle Scholar
Wickham, S. M. & Taylor, H. P. Jr. 1987. Stable isotope constraints on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metamorphism and crustal anatexis in the Pyrenees. Contributions to Mineralogy and Petrology 95, 255–68.CrossRefGoogle Scholar
Xu, H. J., Ma, C. Q., Zhang, J. F. & Ye, K. 2012. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research 23, 190207.CrossRefGoogle Scholar
Xu, S. T., Okay, A. I., Ji, S. Y., Sengor, A. M. C., Su, W., Liu, Y. C. & Jiang, L. L. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science (New York, N.Y.) 256, 80–2.Google Scholar
Xu, X. J., Zhao, Z. F., Zheng, Y. F. & Wei, C. S. 2005. Element and isotope geochemistry of Mesozoic intermediate-felsic rocks at Tianzhushan in the Dabie orogen. Acta Petrologica Sinica 21, 607–22.Google Scholar
Xue, F., Rowley, D. B., Tucker, R. D. & Peng, Z. X. 1997. U-Pb zircon ages of granitoid rocks in the north Dabie complex, eastern Dabie Shan, China. Journal of Geology 105, 744–53.CrossRefGoogle Scholar
Ye, K., Cong, B. L. & Ye, D. N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature 407, 734–36.CrossRefGoogle ScholarPubMed
Zhang, H. F., Gao, S., Zhong, Z. Q., Zhang, B. R., Zhang, L. & Hu, S. H. 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology 186, 281–99.CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S., Chen, F. K., Liu, X. M. & Wu, F. Y. 2008. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology 253, 222–42.CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, F. Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: implications for crust-mantle interaction and crustal architecture. Lithos 126, 99114.CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, Y. B. 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophysical Research Letters 31, L22602.CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, Y. B. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 93, 248–72.CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S., Wu, Y. B., Chen, F. K. & Jahn, B.-M. 2005. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83, 128.CrossRefGoogle Scholar
Zheng, Y. F. 1993. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochimica et Cosmochimica Acta 57, 1079–91.CrossRefGoogle Scholar
Zheng, Y. F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology 328, 548.CrossRefGoogle Scholar
Zheng, Y. F., Fu, B., Gong, B. & Li, L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu Orogen in China: implications for geodynamics and fluid regime. Earth-Science Reviews 62, 105–61.CrossRefGoogle Scholar
Zheng, Y. F., Wu, Y. B., Chen, F. K., Gong, B., Li, L. & Zhao, Z. F. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta 68, 4145–65.CrossRefGoogle Scholar
Zheng, Y. F. & Fu, B. 1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochemical Journal 32, 7189.CrossRefGoogle Scholar
Supplementary material: PDF

Wei and Zhao supplementary material

Wei and Zhao supplementary material

Download Wei and Zhao supplementary material(PDF)
PDF 337.9 KB