Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T19:22:13.818Z Has data issue: false hasContentIssue false

Silicified plant megafossils from the upper Turonian of Vienne, western France

Published online by Cambridge University Press:  29 November 2018

Bernard Gomez*
Affiliation:
CNRS-UMR 5276 Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), 2, rue Raphaël Dubois, F-69622 Villeurbanne, France. Email: [email protected]
Véronique Daviero-Gomez
Affiliation:
CNRS-UMR 5276 Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), 2, rue Raphaël Dubois, F-69622 Villeurbanne, France. Email: [email protected]
Géraldine Garcia
Affiliation:
PALEVOPRIM, CNRS-UMR7262, Université de Poitiers, 6, rue Michel Brunet, F-86073 Poitiers, France.
Laurent Caner
Affiliation:
IC2MP HydrASA, UMR7285 CNRS, Université de Poitiers, 5, rue Albert Turpain, F-86073 Poitiers, France.
Anaïs Boura
Affiliation:
CR2P, MNHN, Sorbonne Université – Paris 6, CNRS, 57, rue Cuvier, CP 48, F-75005 Paris, France.
Abel Barral
Affiliation:
CNRS-UMR 5276 Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), 2, rue Raphaël Dubois, F-69622 Villeurbanne, France. Email: [email protected]
Patrice Cantinolle
Affiliation:
154 Avenue Jean Mermoz, F-86100 Châtellerault, France.
Xavier Valentin
Affiliation:
PALEVOPRIM, CNRS-UMR7262, Université de Poitiers, 6, rue Michel Brunet, F-86073 Poitiers, France. PALAIOS Research Association, 15 rue de l'Aumônerie, F-86300 Valdivienne, France.
*
*Corresponding author

Abstract

A new locality with silicified permineralised plant megafossils is reported from the upper Turonian of Colombiers, Vienne, western France. The plant fossil assemblage consists of Geinitzia reichenbachii (Geinitz) Hollick et Jeffrey and ‘Lomatopteris' superstes Saporta. Whilst G. reichenbachii is a worldwide widespread Cretaceous conifer, ‘L.' superstes is reported in western France for the first time. The latter fossil shows bipinnately compound leaf, marginal teeth, one thick primary vein, pinnate secondary veins and faint, reticulate, narrower veins. Besides its fern-like gross morphology, these characters indicate that it most likely belongs to angiosperms and eudicots. The formation of silicified nodules bearing such fossils from the Cenomanian to the Coniacian of western France was previously attributed to the secondary silicification of limestones during Cenozoic climatic weathering episodes. However, based on both petrography and preservation evidence, we demonstrate that it was an endogenic process contemporaneous to the earliest stages of fossil diagenesis created by palaeoenvironmental and climatic conditions.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

APG IV. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society 181, 120.Google Scholar
Atkinson, B. A., Stockey, R. A. & Rothwell, G. W. 2016. Cretaceous origin of dogwoods: an anatomically preserved Cornus (cornaceae) fruit from the Campanian of Vancouver Island. PeerJ 4, e2808.Google Scholar
Chaboureau, A.-C., Sepulchre, P., Donnadieu, Y. & Franc, A. 2014. Tectonic-driven climate change and the diversification of angiosperms. Proceedings of the National Academy of Sciences 111, 14066–70.Google Scholar
Coiffard, C., Gomez, B., Kvaček, J. & Thévenard, F. 2006. Early angiosperm ecology: evidence from the Albian-Cenomanian of Europe. Annals of Botany 98, 495502.Google Scholar
Coiffard, C. & Gomez, B. 2010. The rise to dominance of the angiosperm kingdom: dispersal habitat widening and evolution during the late Cretaceous of Europe. Lethaia 43, 164169.Google Scholar
de Saporta, G. 1878. Les anciens climats de l'Europe et le développement de la végétation. Conférence donnée au Congrès de l'Association française pour l'avancement des sciences, tenu au Havre en août 1877. Aix-en-Provence: Marius Illy, Imprimeur de l'Académie. 67 pp.Google Scholar
de Saporta, G. 1890. Revue des travaux de paléontologie végétale parus en 1888 ou dans le cours des années précédentes. III. Ere néophytique. Revue Générale de Botanique 2, 176192.Google Scholar
de Saporta, G. & Marion, A. F. 1873. Essai sur la végétation à l'époque des marnes de Gélinden. Mémoires Couronnés et Mémoires des Savants Etrangers, Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, Bruxelles 37, 396.Google Scholar
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional textures. AAPG Special A038, 108121.Google Scholar
Endlicher, S. 1847. Synopsis coniferarum. St. Gallen: Apud Scheitlin and Zollikofer.Google Scholar
Fernandes, P. 2012. Itinéraires et transformations du silex: une pétroarchéologie refondée, application au Paléolithique moyen. Doctoral Thesis, Université de Bordeaux 1, France. 623 pp.Google Scholar
Geinitz, H. B. 1842. Charakteristik der Schichten und Petrefacten des sächsisch-böhmischen Kreidegebirges. Drittes Heft. In Arnoldischen Buchhandlung (ed.) Die sächsisch-böhmische Schweiz, die Oberlausitz und das Innere von Böhmen, Index Petrefactarum, 1st edn, pp. 63116. Dresden and Leipzig: Arnoldischen Buchhandlung.Google Scholar
Gray, S. F. 1822. A natural arrangement of British plants, according to their relations to each other, as pointed out by Jussieu, de Candolle, Brown, & c. including those cultivated for use. Vol. 2. London: Baldwin, Cradock, and Joy. 757 pp.Google Scholar
Hay, W. W. & Floegel, S. 2012. New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews 115, 262272.Google Scholar
Heer, O. 1871. Beiträge zur Kreide-Flora, II. Zur Kreide-Flora von Quedlinburg. Neue Denkschriften der allgemeinen Schweizerischen Gesellschaft für die gesammten Naturwissenschaften 24, 115.Google Scholar
Hérisson, D., Airvaux, J., Lenoble, A., Richter, D., Claud, E. & Primault, J. 2012. Le gisement acheuléen de la Grande vallée à Colombiers (Vienne, France): stratigraphie, processus de formation, datations préliminaires et industries lithiques. Paléo 23, 137154.Google Scholar
Hollick, A. & Jeffrey, E. C. 1909. Studies of Cretaceous coniferous remains from Kreischerville, New York. Memoirs of New York Botanical Garden 3, 1138.Google Scholar
Kunzmann, L. 2010. Geinitzia reichenbachii (Geinitz, 1842) Hollick and Jeffrey, 1909 and Sedites rabenhorstii Geinitz, 1842 (Pinopsida; late Cretaceous) reconsidered and redescribed. Review of Palaeobotany and Palynology 159, 123140.Google Scholar
Martin, J. E., Amiot, R., Lécuyer, C. & Benton, M. J. 2014. Sea surface temperature contributes to marine crocodylomorph evolution. Nature communications 5, 4658.Google Scholar
Moreau, J.-D., Néraudeau, D., Gomez, B., Tafforeau, P. & Dépré, E. 2014a. Plant inclusions from the Cenomanian flints of Archingeay, Les Nouillers, western France. Lethaia 47, 313322.Google Scholar
Moreau, J.-D., Néraudeau, D., Gomez, B., Tafforeau, P. & Dépré, E. 2014b. Inclusions of conifers, echinoids, foraminifers and sponges in flints from the Cenomanian of Charente-Maritime (France): contribution of synchrotron microtomography. Comptes Rendus Palevol 13, 455461.Google Scholar
Moreau, J.-D., Néraudeau, D., Tafforeau, P. & Dépré, E. 2015. Study of the histology of leafy axes and male cones of Glenrosa carentonensis sp. nov. (Cenomanian flints of Charente-Maritime, France) using synchrotron microtomography linked with palaeoecology. PLoS ONE 10, e0134515.Google Scholar
Moreau, J.-D., Néraudeau, D., Plattel, J.-P. & Ravon, A.-L. 2016. Les silex fossilifères (invertébrés marins et plantes terrestres) du Crétacé supérieur de Claix (Charente). Annales de Paléontologie 102, 103116.Google Scholar
Néraudeau, D. 2014. Origine géologique des silex à plantes de Torsac (Charente). Annales de la Société des Sciences naturelles de Charente-Maritime 10, 459473.Google Scholar
Néraudeau, D., Vullo, R., Gomez, B., Perrichot, V. & Videt, B. 2005. Stratigraphie et paléontologie (plantes, vertébrés) de la série paralique Albien terminal-Cénomanien basal de Tonnay-Charente. Comptes Rendus Palevol 4, 7993.Google Scholar
Néraudeau, D., Saint-Martin, S., Batten, D. J., Colin, J.-P., Daviero-Gomez, V., Girard, V., Gomez, B., Nohra, Y. A., Polette, F., Plattel, J.-P., Saint-Martin, J.-P. & Vullo, R. 2016. Palaeontology of the upper Turonian paralic deposits of the Sainte-Mondane Formation, Aquitaine Basin, France. Geologica Acta 14, 5369.Google Scholar
Primault, J. 2003. Exploitation et diffusion des silex de la région du Grand-Pressigny au Paléolithique. Doctoral Thesis, Université de Nanterre, France. 362 pp.Google Scholar
Smith, S. Y., Stockey, R. A., Rothwell, G. W. & Little, S. A. 2016. A new species of Pityostrobus (Pinaceae) from the Cretaceous of California: moving towards understanding the Cretaceous radiation of Pinaceae. Journal of Systematic Palaeontology 15, 6981.Google Scholar
Stockey, R. A., Nishida, H. & Atkinson, B. A. 2016. Anatomically preserved fossil cornalean fruits from the upper Cretaceous of Hokkaido: Eydeia hokkaidoensis gen. et sp. nov. American Journal of Botany 103, 16421656.Google Scholar
Valentin, X., Gomez, B., Daviero-Gomez, V., Charbonnier, S., Ferchaud, P., Kirejtshuk, A. G., Licht, A., Néraudeau, D., Vullo, R. & Garcia, G. 2014. Plant-dominated assemblage and invertebrates from the lower Cenomanian of Jaunay-Clan, south-western France. Comptes Rendus Palevol 13, 443454.Google Scholar
Zeiller, R. 1882. Observations sur quelques cuticules fossiles. Annales des Sciences naturelles Botanique 13, 217238.Google Scholar