Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T23:26:25.021Z Has data issue: false hasContentIssue false

Sensory and other superficial structures in living marine Crustacea

Published online by Cambridge University Press:  03 November 2011

M. S. Laverack
Affiliation:
Gatty Marine Laboratory, University of St Andrews, Fife KY16 8LB, Scotland.
Y. Barrientos
Affiliation:
Gatty Marine Laboratory, University of St Andrews, Fife KY16 8LB, Scotland.

Abstract

Living Crustacea possess many types of sensory receptors that detect environmental signals. These structures allow the speculation that similar organs existed in fossil arthropods and were involved in similar ways in the fossil forms when they were extant.

Posture, for example, is difficult to reconstruct in fossils without the understanding that internal proprioceptors monitoring position and movement are crucial in determining the placement of limbs, and the position of the abdomen and other jointed portions of the body. These receptors are associated also with autotomy reflexes through soft cuticle detectors that respond to strain not associated with joints.

Many receptors are placed on the outer surface of the animal, the eyes being the most obvious. The eyes receive no attention in this paper, but descriptions are given of a number of different types of setae, serving both mechanical and chemical sensors. The possession of a pore at the apex (or sub-apex) of a seta or setule probably indicates a chemoreceptor function, but its absence does not necessarily indicate a lack of such sensitivity. A range of forms is illustrated.

The dorsal organ is a recently discovered structure in decapod larvae. It is composed of a central single gland cell opening via an aperture in the midline just behind the rostrum. It is bounded by four depressions each containing a central ‘nipple’. These prove to be sensors, with ciliated endings (bifid) that end in a highly modified cuticle at the depression nipple. The function is unknown, but it is proposed that it represents an unusual chemoreceptor.

Type
Living forms and their bearing on the interpretation of fossils
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ache, B. W. 1982. Chemoreception and thermoreception. In Bliss, D. H. (ed.) Biology of Crustacea, Vol. 3 (Atwood, H. & Sandeman, D. C., 369–98. New York: Academic Press.CrossRefGoogle Scholar
Alexandrowicz, J. S. 1972. The comparative anatomy of leg proprioceptors in some decapod Crustacea. J MAR BIOL ASS U.K. 52, 605–54.CrossRefGoogle Scholar
Alexandrowicz, J. S. & Whitear, M. 1957. Reception elements on the coxal region of Decapoda Crustacea. J MAR BIOL ASS U.K 36, 603–28.CrossRefGoogle Scholar
Altner, I., Hatt, H. & Altner, H. 1983. Structural properties of bimodal chemo- and mechanosensitive setae on the pereiopod chelae of the crayfish, Austropotamobius torrentium. CELL TISSUE RES 228, 357–74.CrossRefGoogle ScholarPubMed
Atema, J. 1985. Chemoreception in the lobster. SYMP SOC EXP BIOL 39, in press.Google Scholar
Barth, F. G. 1980. Campaniform sensilla; another vibration receptor in the crab leg. NATURWISSENCHAFTEN 67, 201–3.CrossRefGoogle Scholar
Barth, F. G. 1981. Strain detection in the arthropod exoskeleton. In Laverack, M. S. & Cosens, D. J. (eds) Sense Organs Chap. 8, 112–41.Google Scholar
Bender, M., Gnatzy, W. & Tautz, J. 1984. The antennal feathered hairs in the crayfish: A non-innervated stimulus transmitting system. J COMP PHYSIOL A 154, 45–7.CrossRefGoogle Scholar
Bliss, D. H. (Ed.) 1982. Biology of Crustacea, New York: Academic Press.Google Scholar
Bush, B. & Laverack, M. S. 1982. Mechanoreceptors. In Bliss, D. H. (ed.) Biology of Crustacea, Vol. 3 (Atwood H. C. & Sandman D. C., eds), 339456. New York: Academic Press.Google Scholar
Carr, W. E. S. & Thompson, H. W. 1983. Adenosine 5'-monophosphate, an internal regulatory agent, is a potent chemoattractant for a marine shrimp. J COMP PHYSIOL 153, 4753.CrossRefGoogle Scholar
Case, J. & Gwilliam, G. F. 1961. Amino acid sensitivity of the dactyl chemoreceptors of Carcinides maenas. BIOL BULL WOODS HOLE 121, 449–75.CrossRefGoogle Scholar
Clarac, F. & Vedel, J. P. 1973. Etude electrophysiologique du recepteur hydrodynamique de l'antenne de la langouste, Palinurus vulgaris C R HEBD SEANCES SCI 276, 603–6.Google Scholar
Corbière-Tichanée, G. & Loftus, R. 1983. Antennal thermal receptors of the cave beetle, Speophyes lucidulus Delar II. Cold receptor response to slowly changing temperature. J COMP PHYSIOL 153, 343–51.CrossRefGoogle Scholar
Derby, C. D. 1982. Structure and function of cuticular sensilla of the lobster Homarus americanus. J CRUSTACEAN BIOL 2, 121.CrossRefGoogle Scholar
Eckert, R. & Randall, D. 1983. Animal Physiology, 2nd edn. San Francisco: Freeman.Google Scholar
Factor, J. R. 1978. Morphology of the mouthparts of larvae lobster, Homarus americanus (Decapoda: Naphropidae) with special emphasis on their setae. BIOL BULL WOODS HOLE 154, 383408.CrossRefGoogle Scholar
Fish, S. 1972. The setae of Eurydice pulchra (Crustacea: Isopoda) J. ZOOL LOND 166, 163–77.CrossRefGoogle Scholar
Fleminger, A. 1973. Pattern, number, variability, and taxonomic significances of integumental organs (sensillae and glandular pores) in the genus Eucalanus (Copepoda: Calanoida). FISH BULL 71, 9651010.Google Scholar
Friedman, M. M. & Strickler, J. R. 1975. Chemoreceptors and feeding in the calanoid copepods (Arthropoda: Crustacea). PROG NATL ACAD SCI 4185–8.CrossRefGoogle ScholarPubMed
Ghiradella, H., Cronshaw, J. & Case, J. 1968. Fine structure of the aesthetascs of Coenobita compressus, Edwards. J MORPHOL 124, 361–8.CrossRefGoogle ScholarPubMed
Gnatzy, W., Schmidt, M. & Römbke, J. 1984. Are the funnel-canal organs the “campaniform sensilla” of the shore crab Carcinus maenas (Crustacea, Decapoda)? ZOOMORPHOLOGY 104, 1120.CrossRefGoogle Scholar
Hatt, H. & Schmiedel-Jacob, I. 1984. Electrophysiological studies of pyridine-sensitive units on the crayfish walking leg. 1. Characteristics of stimulating molecules. J COMP PHYSIOL A 154, 855–63.CrossRefGoogle Scholar
Heiman, P. 1984. Fine structure and moulting of aesthetasc sense organs on the antennules of the isopod, Asellus aquaticas (Crustacea). CELL TISSUE RES 235, 117–28.Google Scholar
Jones, M. B. & Fordy, M. R. 1973. Stereoscan electron microscope observations of Jaera nordmanni nordica Lamercier (Crustacea: Isopoda). ZOOL J LINN SOC 53, 5964.CrossRefGoogle Scholar
Laverack, M. S. 1963. Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). III. Activity invoked in sense organs of the carapace. COMP BIOCHEM PHYSIOL 10, 261–72.CrossRefGoogle ScholarPubMed
Laverack, M. S. & Ardill, D. J. 1965. The innervation of the aesthetasc hairs of Palinurus argus. Q J MICROSC SCI 106, 4560.Google Scholar
Laverack, M. S. 1976. External proprioceptors. In Mill, P. J. (ed.) Structure and Function of Proprioceptors in the Invertebrates, Chap. I, 163, London: Chapman & Hall.Google Scholar
Laverack, M. S. 1978. Distribution and organization of CAP sensillae in Decapod Crustacea. MAR BEHAV PHYSIOL 5, 231–42.CrossRefGoogle Scholar
Laverack, M. S. 1981. The adaptive radiation of sense organs. In Laverack, M. S. & Cosens, D. J. (eds) Sense Organs 730. Glasgow: Blackie.Google Scholar
Luther, W. 1930. Versuche über die Chemorezeption der Brachyuren. Z VGL PHYSIOL 12, 177205.CrossRefGoogle Scholar
Macmillan, D. L. & Dando, M. R. 1972. Tension receptors on the apodemes of muscles in the walking legs of the crab Cancer magister. MAR BEHAV PHYSIOL 1, 185208.CrossRefGoogle Scholar
Mauchline, J. & Ballantyne, R. S. 1975. The integumental organs of amphipods. J MAR BIOL ASS U K 55, 345–55.CrossRefGoogle Scholar
Mauchline, J., Aizawa, Y., Ishimuru, T., Nishida, S. & Marumo, R. 1977. Integumental sensilla of pelagic decapod crustaceans. MAR BIOL 43, 149–55.CrossRefGoogle Scholar
McMahon, B. R. & Wilkens, J. L. 1983. Ventilation, perfusion and oxygen uptake. In Bliss, D. H. (ed) Biology of Crustacea, vol. 5 (Mantel L. H., ed.), 289372. New York: Academic Press.Google Scholar
McVean, A. 1982. Autotomy. In Bliss, D. H. (ed) Biology of Crustacea, Vol. 4 (Atwood H. C. & Sandeman D.C., eds), 107–32. New York: Academic Press.Google Scholar
Mead, F., Gabouriaut, D. & Corbière-Tichanée, G. 1976. Structure de l'organe sensorial apical de l'antenne chez l'isopode terrestre Metoponorthus sexfaciatus Budd-Lund (Crustacea, Ispoda). ZOOMORPHOLOGIE 83, 253–69.CrossRefGoogle Scholar
Mellon, D. 1963. Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J EXP BIOL 40, 137–48.CrossRefGoogle Scholar
Neil, D. M. 1975. The optokinetic responses of the mysid shrimp, Plaunus flexuosus. J EXP BIOL 62, 505–18.CrossRefGoogle Scholar
Ong, J. E. 1969. The fine structure of mandibular sensory receptors in the brackish water calanoid copepod, Gladioferens pectinatus (Brady). Z ZELLFORSCH MICROSK AN AT 97, 178–95.CrossRefGoogle ScholarPubMed
Page, C. H. 1982. Control of posture. In Bliss, D. H. (ed.) Biology of Crustacea, Vol. 3 (Atwood H. C. & Sandeman D. C, eds), 3359. New York: Academic Press.Google Scholar
Parson, D. W. 1982. Responses and central interactions of tension receptors in the leg flexor muscle of Carcinus. COMP BIOCHEM PHYSIOL 72, 391–9.CrossRefGoogle Scholar
Robertson, R. M. & Laverack, M. S. 1978. Inhibition of oesophageal peristalsis in the lobster after chemical stimulation. NATURE 271, 239–40.CrossRefGoogle ScholarPubMed
Ross, R. D. & Stokes, D. R. 1981. A crustacean statocyst with only three hairs: light and scanning electron microscopy. J MORPHOL 169, 21–8.CrossRefGoogle Scholar
Sandeman, D. C. & Okajima, A. 1972. Statocyst induced eye movement in the crab, Scylla serrata. I. The sensory input from the statocyst. J EXP BIOL 57, 187204.CrossRefGoogle ScholarPubMed
Sars, G. O. 1912. An account of the Crustacea of Norway, Vols VI–VII. Bergen: Bergen Museum.Google Scholar
Schmidt, M. & Gnatzy, W. 1984. Are the funnel canal organs the ‘campaniform sensilla’ of the shore crab Carcinus maenas (Decapoda, Crustacea)? II. Ultrastructure. CELL TISSUE RES 237, 8193.CrossRefGoogle Scholar
Seelinger, G. 1977. Der Antennenendzpfem der tunesischem Wüstenassel, Helilepistus reaumuri, ein komplexes Sinneorgan (Crustacea, Isopoda). J COMP PHYSIOL 113, 95103.CrossRefGoogle Scholar
Seelinger, G. 1983. Responses characteristic and specificity of chemoreceptors in Hemilepistus reaumuri (Crustacea, Isopoda). J COMP PHYSIOL 152, 219–29.CrossRefGoogle Scholar
Shaw, S. R. & Stowe, S. 1982. Photoreception. In Bliss, D. H. (ed.) Biology of Crustacea, Vol. 3 (Atwood H. C. & Sandeman D. C., eds). 292356. New York: Academic Press.Google Scholar
Shelton, R. G. J. 1974. Observations on the occurrence of an epizooic blue-green alga on the chemoreceptor setae of the brown shrimp, Crangon crangon (L). J MAR BIOL ASS UK 54, 301–7.CrossRefGoogle Scholar
Shelton, R. G. J. & Laverack, M. S. 1968. Observations on a redescribed crustacean cuticular sense organ. COMP BIOCHEM PHYSIOL 25, 1049–59.CrossRefGoogle Scholar
Slifer, E. 1977. Sense organs on the antennal flagellum of mayflies (Ephemeroptera). J MORPHOL 153, 355–62.CrossRefGoogle ScholarPubMed
Snow, P. J. 1973. Ultrastructure of the aesthetasc hairs of the littoral decapoda, Paragrapsus gaimaritii. Z ZELLFORSCH 138, 489502.CrossRefGoogle Scholar
Strickler, J. R. 1985. Feeding behaviour in marine copepods. SYMP SOC EXP BIOL 39, in press.Google Scholar
Strickler, J. R. & Bal, A. K. 1973. Setae of the first antennae of the copepod cyclops Cyclops scutifer (Sars): their structure and importance. PROC NATL ACAD SCI 70, 2656–9.CrossRefGoogle ScholarPubMed
Tautz, J., Masters, W. M., Aicher, B. & Markl, H. 1981. A new type of water vibration receptor on the crayfish antenna. I. Sensory physiology. J COMP PHYSIOL 144, 533–41.CrossRefGoogle Scholar
Wales, W. F., Clarac, F., Dando, M. R. & Laverack, M. S. 1970. Innervation of the receptors present at the various joints of the pereiopods and third maxilliped of Homarus gammarus (L) and other Macruran Decapods (Crustacea). Z VGL PHYSIOL 68, 345–84.CrossRefGoogle Scholar
Wales, W., Clarac, F. & Laverack, M. S. 1971. Stress detection at the autotomy plane in the decapod Crustacea. I. Comparative anatomy of the receptors of the basi-ischiopodite region. Z VGL PHYSIOL 73, 357–82.CrossRefGoogle Scholar