Published online by Cambridge University Press: 27 March 2013
This study is concerned with the relationship between carbonisation conditions and properties of the resultant bagasse char, and the challenging proposal for the use of fine bagasse char particles as high-performance solar light collectors. Bagasse char was obtained by carbonising raw bagasse at temperatures of 200–900°C for three hours in nitrogen (N2) gas. Characterisation of the resultant bagasse char was performed by elemental analysis (EA), scanning electric microscope (SEM) observation, estimation of colour, nominal bulk density and evaluation of specific surface area and pore structure by N2 gas absorption/desorption. The most typical property of the resultant bagasse char is its unique pore structure, which is clear in SEM observation. The largest specific surface area of bagasse char in this study was about 600 m2/g, which is as large as commercial activated carbon materials. Macro-, meso- and micro-porous structures in the bagasse char induce many important characteristics, such as increased hydrophilicity, very low bulk density and excellent light absorption and accumulation. We also suggest the use of bagasse char as an excellent heat insulation material. The energy used for air conditioning in a private house or office building can be decreased by more than 50–60% by use of this insulator on the roof or walls.