Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-16T09:21:34.880Z Has data issue: false hasContentIssue false

Geochemistry of a dismembered metaophiolite complex, Letovice, Czechoslovakia

Published online by Cambridge University Press:  03 November 2011

E. Jelínek
Affiliation:
Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czechoslovakia.
M. Pačesová
Affiliation:
Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czechoslovakia.
Z. Mísař
Affiliation:
Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czechoslovakia.
P. Martinec
Affiliation:
Coal Research Institute, 716 07 Ostrava-Radvanice, Czechoslovakia.
Z. Weiss
Affiliation:
Coal Research Institute, 716 07 Ostrava-Radvanice, Czechoslovakia.

Abstract

The origin of a suite of ultrabasic and basic rocks from the Letovice crystalline complex in the eastern part of the Bohemian massif, Czechoslovakia, is discussed on the basis of new geological and geochemical data. Strongly serpentinised spinel peridotites, plagioclase peridotites and pyroxenites, together with metagabbros, amphibolites and minor dykes of metadolerite, make up about 70% of the complex; metasediments, mainly mica schists, make up the remaining 30%. The ultramafic and mafic rocks constitute parts of a dismembered ophiolite considered to have been formed in the Cadomian episode. They show effects of polyphase deformation and were variously metamorphosed under conditions of greenschist to garnet amphibolite fades at 400–600°C and 2–5 kb. Geochemical features of the ultrabasic suite are similar to those of other ophiolite complexes, such as those of Bay of Islands, Oman, Papua, Pindos, Sarmiento and Troodos and are likely to be products of a marginal sea environment.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Alleman, F. & Peters, T. 1972. The ophiolite-radiolarite belt of the North-Oman Mountains. ECLOGAE GEOL HELV 65, 657–97.Google Scholar
Beccaluva, L., Ohnenstetter, D. & Ohnenstetter, M. 1979. Geochemical discrimination between ocean floor and island arc tholeiites, application to some ophiolites. OFIOLITI 4, 6773.Google Scholar
Black, R. 1980. Precambrian of West Africa. EPISODES 1980 (4) 38.CrossRefGoogle Scholar
Bowes, D. R., Hopgood, A. M. & Mísař, Z. 1978. Polyphase deformation in amphibolites of the Letovice crystalline unit, Moravia. VESTN USTR USTAVU GEOL 53, 273–80.Google Scholar
Bowes, D. R., Hopgood, A. M. & Mísař, Z. 1980. Characterization of tectonic regimes of the Letovice unit and Bíteš gneiss of the Moravicum using the structural imprint of polyphase deformation. VESTN USTR USTAVU GEOL 55, 331–42.Google Scholar
Cháb, J., Bouška, V., Jelínek, E., Pačesová, M. & Povondra, P. 1982. Petrology and geochemistry of the Upper Proterozoic Fe–Mn–deposit Chvaletice (Bohemia, Czechoslovakia), SB USTR USTAVU GEOL LOZISKOVA GEOL MINERAL 23, 968.Google Scholar
J., Cháb & Suk, M. 1977. Regionální metamorfóza na území Čech a Moravy. KNIHOVNA USTR USTAVU GEOL 50, 1156.Google Scholar
Coleman, R. G. 1977. Ophiolites—ancient oceanic lithosphere? Berlin: Springer.CrossRefGoogle Scholar
Čuta, J., Mísař, Z. & Válek, R. 1964. Interpretace tíhového pole severovýchodního okraje Českého masívu (Interpretation des Schwerefeldes im nordöstlichen Teil des Böhmischen Massivs). SB GEOLIGICKYCH VED UZITA GEOFYZIKA 3, 157–80.Google Scholar
Davies, H. L. 1971. Peridotite–gabbro–basalt complex in eastern Papua: an over-thrust plate of oceanic mantle and crust. BULL AUST BUR MINER RESOUR 128.Google Scholar
Ellenberger, F. & Tamain, A. L. G. 1980. Hercynian Europe. EPISODES 1980(1), 22–7.Google Scholar
Fiala, F. 1977. Proterozoický vulkanismus Barrandienu a problematika spilitu. SB GEOL VED GEOL 30, 7247.Google Scholar
Irvìne, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of common volcanic rocks. CAN J EARTH SCI 8, 523–48.CrossRefGoogle Scholar
Jakeš, P., Zoubek, J., Zoubková, J. & Franke, W. 1979. Graywackes and metagraywackes of the Teplá–Barrandian Proterozoic area. SB GEOL VED GEOL 33, 83122.Google Scholar
Macdonald, G. A. & Katsura, T. 1964. Chemical composition of Hawaiian lavas. J PETROL 5, 82133.CrossRefGoogle Scholar
Malachov, I. A. 1965. Petrokhimia ultrabazitov Urala. TR INST GEOL AN SSSR URAL FIL 79.Google Scholar
Mísař, Z. 1966. Structural history of ultrabasic bodies of the Letovice crystalline unit (Moravia). KRYSTALINIKUM 4, 109–26.Google Scholar
Mísař, Z. 1979. The position of ultrabasic rocks in geotectonic cycles and geological units of the Bohemian Massif. In Vanek, J.et al. (eds) Geodynamic investigations in Czechoslovakia, 167–77. Bratislava: Veda.Google Scholar
Mísař, Z., E., Jelínek & M., Pačesová 1984. The Letovice dismembered metaophiolites in the framework of the Saxo-Thuringian zone of the Bohemian massif. MINER SLOVACA 16, 1328.Google Scholar
Mitchell, A. H. G. & Garson, M. S. 1981. Mineral deposits and global tectonic settings. London: Academic Press.Google Scholar
Miyashiro, A. 1973. The Troodos ophiolitic complex was probably formed in an island arc. EARTH PLANET SCI LETT 19, 218–24.CrossRefGoogle Scholar
Miyashiro, A. 1975. Classification, characteristics, and origin of ophiolites. J. GEOL 83, 249–81.CrossRefGoogle Scholar
Montigny, R., Bougault, H., Bottinga, Y. & Allegre, C. J. 1973. Trace element geochemistry and genesis of the Pindos ophiolite suite. GEOCHIM COSMOCHIM ACTA 37, 2135–47.CrossRefGoogle Scholar
Norman, R. E. & Strong, D. F. 1975. The geology and geochemistry of ophiolitic rocks exposed at Ming's Bight, Newfoundland. CAN J EARTH SCI 12, 777–97.CrossRefGoogle Scholar
Pearce, J. A. 1975. Basalt geochemistry used to investigate past tectonic environments on Cyprus. TECTONOPHYSICS 25, 4167.CrossRefGoogle Scholar
Pearce, T. H., Gorman, B. E. & T. C., Birkett 1975. The TiO2—K2O—P2O5 diagram: a method of discriminating between oceanic and non-oceanic basalts. EARTH PLANET SCI LETT 24, 419–26.CrossRefGoogle Scholar
Saunders, A. D., Tarney, J., Stern, C. R. & Dalziel, I. W. D. 1979. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. BULL GEOL SOC AM 90, 237–58.2.0.CO;2>CrossRefGoogle Scholar
Shervais, J. W. 1982. Ti—V plots and the petrogenesis of modern and ophiolitic lavas. EARTH PLANET SCI LETT 59, 101–18.CrossRefGoogle Scholar
Skinner, W. R., Bowes, D. R. & Skinner, D. L. 1978. Petrochemistry of chromite-bearing ultramafic complexes, Red Lodge, Montana, U.S.A. In Verwoerd, W. J. (ed.) Mineralization in metamorphic terranes, 509–27. SPEC PUBL GEOL SOC S AFR 3.Google Scholar
Smewing, J. D., Simonian, K. O. & Gass, I. G. 1975. Metabasalt from the Troodos Massif, Cyprus: genetic implication deduced from petrography and trace elements geochemistry. CONTRIB MINERAL PETROL 51, 4964.CrossRefGoogle Scholar
Steinmann, G. 1927. Die ophiolitischen Zonen in den mediterranen Kettengebirge. REP 14TH INT GEOL CONGR 2, 638–67.Google Scholar
Suen, C. J., Frey, F. A. & Malpas, J. 1979. Bay of Islands ophiolite suite, Newfoundland: petrologie and geochemical characteristics with emphasis on rare earth element geochemistry. EARTH PLANET SCI LETT 45, 337408.CrossRefGoogle Scholar
van Breemen, O., Aftalion, M., Bowes, D. R., Dudek, A., Mísař, Z., Povandra, P. & Vrána, S. 1982. Geochronological studies of the Bohemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. TRANS R SOC EDINBURGH EARTH SCI 73, 89108.CrossRefGoogle Scholar
Werner, C. D. 1981. Outline on the evolution of the magmatism in the G.D.R. In: Ophiolites and initialites of northern border of the Bohemian massif. Guide book of excursions in German Democratic Republic and Polish People's Republic 1, 1768. Potsdam: Academy of Sciences of German Democratic Republic.Google Scholar
Windley, B. F. 1977. The evolving continents. London: Wiley.Google Scholar