Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T06:39:15.108Z Has data issue: false hasContentIssue false

Callixylon wendtii sp. nov., a new species of archaeopteridalean progymnosperm from the Late Devonian of Anti-Atlas, Morocco

Published online by Cambridge University Press:  30 August 2018

Mélanie Tanrattana*
Affiliation:
UMR7207, MNHN, CNRS, Université Paris-Sorbonne, Paris, France. Email: [email protected] AMAP, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France. Emails: [email protected]; [email protected]
Brigitte Meyer-Berthaud
Affiliation:
AMAP, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France. Emails: [email protected]; [email protected]
Anne-Laure Decombeix
Affiliation:
AMAP, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France. Emails: [email protected]; [email protected]
*
*Corresponding author

Abstract

Archaeopterid trees were the main components of most Late Devonian forests. Their aerial axes characterised by a eustele with mesarch primary xylem strands, leaf traces departing radially from cauline bundles and secondary xylem tracheids with radial pits arranged in groups, are referred to the genus Callixylon Zalessky. The nineteen species of Callixylon described to date from North America, North Africa, Europe, Xinjiang and several parts of Russia range from the late Givetian to the Mississippian. In this paper, we describe a new species of Callixylon from two specimens collected in the Famennian locality of Mader el Mrakib in eastern Anti-Atlas. Callixylon wendtii sp. nov. is characterised by the presence of sclerotic nests in the pith, a new character for the genus. Its wood shows narrow rays of variable height, with unevenly distributed ray tracheids. Small vascular traces crossing the wood within the two innermost growth rings are interpreted as evidence for short-lived leaves. This discovery adds to the diversity of the genus Callixylon in an area of northern Gondwana that may have been favourable to the establishment of a diverse community of archaeopterid trees.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Anderson, H. M., Hiller, N. & Gess, R. W. 1995. Archaeopteris (Progymnospermopsida) from the Devonian of southern Africa. Botanical Journal of the Linnean Society 117, 305–20.Google Scholar
Andrews, H. N., Phillips, T. L. & Radforth, N. W. 1965. Paleobotanical studies in Arctic Canada. I. Archaeopteris from Ellesmere Island. Canadian Journal of Botany 43, 545–56.Google Scholar
Arnold, C. A. 1930. The genus Callixylon from the Upper Devonian of central and western New York. Papers of the Michigan Academy of Science, Arts and Letters XI, 150.Google Scholar
Arnold, C. A. 1931. On Callixylon newberryi (Dawson) Elkins et Wieland. Contributions from the Museum of Paleontology University of Michigan 3, 207–32.Google Scholar
Arnold, C. A. 1934. Callixylon whiteanum sp. nov., from the Woodford chert of Oklahoma. Botanical Gazette 96, 180–85.Google Scholar
Beck, C. B. 1953. A new root species of Callixylon. American Journal of Botany 40, 226–33.Google Scholar
Beck, C. B. 1960. Connection between Archaeopteris and Callixylon. Science 131, 1524–25.Google Scholar
Beck, C. B. 1962. Reconstruction of Archaeopteris and further consideration of its phylogenetic position. American Journal of Botany 49, 373–82.Google Scholar
Beck, C. B. 1964. Predominance of Archaeopteris in Upper Devonian flora of western Catskills and adjacent Pennsylvania. Botanical Gazette 125, 126–28.Google Scholar
Beck, C. B., Coy, K. & Schmid, R. 1982. Observations on the fine structure of Callixylon wood. American Journal of Botany 69, 5476.Google Scholar
Beck, C. B. & Wight, D. C. 1988. Progymnosperms. In Beck, C. B. (ed.) Origin and evolution of gymnosperms, 184. New York: Columbia University Press. 504 pp.Google Scholar
Berry, C. M., Morel, E., Mojica, J. & Villarroel, C. 2000. Devonian plants from Colombia, with discussion of their geological and palaeogeographical context. Geological Magazine 137, 257–68.Google Scholar
Cai, C.-Y. 1989. Two Callixylon species from Upper Devonian of Junggar Basin, Xinjiang. Acta Palaeontologica Sinica 28, 571–78.Google Scholar
Chitaley, S. 1988. The wood Callixylon from the Late Devonian of Ohio, USA. Review of Palaeobotany and Palynology 53, 349357.Google Scholar
Chitaley, S. & Cai, C. 2001. Permineralized Callixylon woods from the Late Devonian Cleveland Shale of Ohio, USA and that of Kettle Point, Ontario, Canada. Review of Palaeobotany and Palynology 114, 127–44.Google Scholar
Cornet, L., Gerrienne, P., Meyer-Berthaud, B. & Prestianni, C. 2012. A Middle Devonian Callixylon (Archaeopteridales) from Ronquières, Belgium. Review of Palaeobotany and Palynology 183, 18.Google Scholar
Cribbs, J. E. 1939. Cauloxylon ambiguum, gen. et sp. nov., a new fossil plant from the Reed Springs Formation of southwestern Missouri. American Journal of Botany 26, 440–49.Google Scholar
Dawson, J. W. 1871. The fossil plants of the Devonian and Upper Silurian formations of Canada. Geological Survey of Canada, Montreal 1, 192.Google Scholar
Decombeix, A.-L., Meyer-Berthaud, B. & Galtier, J. 2007. A review of the genus Eristophyton, with special focus on the Mississippian species. Comptes Rendus Palevol 6, 393401.Google Scholar
Decombeix, A.-L. & Galtier, J. 2017. Ahnetia, a new lignophyte stem from the Lower Carboniferous of southern Algeria. Review of Palaeobotany and Palynology 237, 6274.Google Scholar
Decombeix, A.-L. & Meyer-Berthaud, B. 2013. A Callixylon (Archaeopteridales, Progymnospermopsida) trunk with preserved secondary phloem from the Late Devonian of Morocco. American Journal of Botany 100, 2219–30.Google Scholar
DiMichele, W. A. & Hook, R. W. 1992. Paleozoic terrestrial ecosystems. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D. & Wing, S. L. (eds) Terrestrial ecosystems through time. Evolutionary palaeoecology of terrestrial plants and animals, 205325. Chicago: The University of Chicago Press. 578 pp.Google Scholar
Doubinger, J. & Marguerier, J. 1975. Paléoxylologie: étude anatomique comparée de Scleromedulloxylon aveyronense nov. gen. nov. sp. du Permien de St-Affrique (Aveyron, France); considérations taxinomiques et stratigraphiques. Geobios 8, 2559.Google Scholar
Dun, W. S. 1897. On the occurrence of Devonian plant bearing beds on the Genoa River, Co. of Auckland. Records of the Geological Survey of New South Wales 5, 117–23.Google Scholar
Elkins, M. G. & Wieland, G. R. 1914. Cordaitean wood from the Indiana Black Shale. American Journal of Science – Fourth Series 38, 6578.Google Scholar
Falcon-Lang, H. J., Kurzawe, F. & Lucas, S .G. 2014. Coniferopsid tree trunks preserved in sabkha facies in the Permian (Sakmarian) Community Pit Formation in south-central New Mexico, USA: Systematics and palaeoecology. Review of Palaeobotany and Palynology 200, 138–60.Google Scholar
Galtier, J., Paris, F. & El Aouad-Debbaj, Z. 1996. La présence de Callixylon dans le Dévonien supérieur du Maroc et sa signification paléogéographique. Comptes Rendus de l'Académie des Sciences Paris, Série IIa 322, 893900.Google Scholar
Hammond, S. E. 2004. Progymnosperms and the origin of the seed. PhD Thesis, Cardiff University, UK. 300 pp.Google Scholar
Hernandez-Castillo, G. R., Stockey, R. A., Rothwell, G. W. & Mapes, G. 2009. Reconstruction of the Pennsylvanian-age walchian conifer Emporia cryptica sp. nov. (Emporiaceae: Voltziales). Review of Palaeobotany and Palynology 157, 218–37.Google Scholar
Hoskins, J. H. & Cross, A. T. 1951. The structure and classification of four plants from the New Albany Shale. American Midland Naturalist 46, 684716.Google Scholar
Hylander, C. J. 1922. A mid-Devonian Callixylon. American Journal of Science 204, 315–21.Google Scholar
Iurina, A. L. & Lemoigne, Y. 1972. Palaeoxylon kazakstanensis: nouvelle structure ligneuse de type araucarien, du Dévonien Supérieur du Kazakstan central (URSS). Comptes Rendus de l'Académie des Sciences Paris, Série D 274, 814–17.Google Scholar
Iurina, A. & Lemoigne, Y. 1979. Sur la présence du Callixylon newberryi (Dawson) Elkins et Wieland 1814, en Kazakhstan (URSS) au Dévonien supérieur. Palaeontographica B 170, 19.Google Scholar
Kräusel, R., Maithy, P. K. & Maheshwari, H. K. 1962. Gymnospermous woods with primary structures from Gondwana rocks – a review. The Palaeobotanist 10, 97107.Google Scholar
Kräusel, R. & Weyland, H. 1929. Beiträge zur Kenntnis der Devonflora, III. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 41, 315–60.Google Scholar
Kräusel, R. & Weyland, H. 1937. Pflanzenreste aus dem Devon. X. Zwei Pflanzenfunde im Oberdevon der Eifel. Senckenbergiana 19, 338–55.Google Scholar
Kurzawe, F., Iannuzzi, R., Merlotti, S. & Rohn, R. 2013. New gymnospermous woods from the Permian of the Parnaíba Basin, Northeastern Brazil, Part II: Damudoxylon, Kaokoxylon and Taeniopitys. Review of Palaeobotany and Palynology 195, 5064.Google Scholar
Lemoigne, Y., Iurina, A. & Snigirevskaya, N. 1983. Révision du genre Callixylon Zalessky 1911 (Archaeopteris) du Dévonien. Palaeontographica B 186, 81120.Google Scholar
Lepekhina, V. G. 1963. New finds of cordaitean woods from upper Palaeozoic of Kazakhstan. Journal of Palaeontology 4, 101–09.Google Scholar
Maheshwari, H. K. 1972. Permian wood from Antarctica and revision of some Lower Gondwana wood taxa. Palaeontographica B 138, 143.Google Scholar
Marcelle, H. 1951. Callixylon velinense nov. sp. Un bois à structure conservée du Dévonien de Belgique. Bulletin de l'Académie Royale de Belgique, Sciences 37, 908–19.Google Scholar
Matten, L. C. 1972. Callixylon from the Maury Formation (Lower Mississipian) of Tennessee. Journal of Paleontology 46, 711–13.Google Scholar
Matten, L. C. & Trimble, L. J. 1979. Petrified plants from the Maury Formation (Tournaisian) of Central Tennessee. In Geldsetzer, H. H. J., Nassichuk, W. W., Belt, E. S. & Macqueen, R. W. (eds) Ninth International Congress on the Carboniferous Stratigraphy and Geology, Proceedings volume 3, 8394. Carbondale, IL: Southern Illinois University Press.Google Scholar
Merlotti, S. 1998. Mussaeoxylon, novo táxon gimnospérmico do Gondvana brasileiro. Acta Geológica Leopoldensia 21, 4554.Google Scholar
Merlotti, S. 2002. Dois novos taxa lenhosos da Formação Serra Alta (Permiano Superior, Bacia do Paraná), Estado do Rio Grande do Sul, Brasil. Geosciencias 7, 514.Google Scholar
Merlotti, S. & Kurzawe, F. 2011. Lenhos permianos da Bacia do Paraná, Brasil: síntese e revisão taxonômica. GAEA Journal of Geoscience 71, 1933.Google Scholar
Meyer-Berthaud, B., Wendt, J. & Galtier, J. 1997. First record of a large Callixylon trunk from the Late Devonian of Gondwana. Geological Magazine 134, 847–53.Google Scholar
Meyer-Berthaud, B., Scheckler, S. E. & Bousquet, J.-L. 2000. The development of Archaeopteris: new evolutionary characters from the structural analysis of an Early Famennian trunk from southeast Morocco. American Journal of Botany 87, 456–68.Google Scholar
Meyer-Berthaud, B., Rücklin, M., Soria, A., Belka, Z. & Lardeux, H. 2004. Frasnian plants from the Dra Valley, southern Anti-Atlas, Morocco. Geological Magazine 141, 675–86.Google Scholar
Meyer-Berthaud, B., Soria, A. & Decombeix, A.-L. 2010. The land plant cover in the Devonian: a reassessment of the evolution of the tree habit. In Vecoli, M., Clément, G. & Meyer-Berthaud, B. (eds) The terrestrialization process: modelling complex interactions at the biosphere-geosphere interface. Geological Society, London, Special Publications 339, 5970. London & Bath: The Geological Society. 187 pp.Google Scholar
Meyer-Berthaud, B., Decombeix, A.-L. & Ermacora, X. 2013. Archaeopterid root anatomy and architecture: New information from permineralized specimens of Famennian age from Anti-Atlas (Morocco). International Journal of Plant Sciences 174, 364–81.Google Scholar
Moreno-Sanchez, M. 2004. Devonian plants from Colombia: geologic framework and paleogeographic implications. PhD Thesis, Université de Liège, Belgium. 108 pp.Google Scholar
Orlova, O. A., Jurina, A. L. & Gordenko, N. V. 2011. First finding of Archaeopteridaceae wood in the Upper Devonian deposits of the Middle Timan Region. Moscow University Geology Bulletin 66, 341–47.Google Scholar
Orlova, O. A. & Jurina, A. 2011. Genus Callixylon Zalessky (Archaeopteridophyta): main criteria for distinguishing its species and revision of its species composition. Paleontological Journal 45, 580–89.Google Scholar
Penhallow, D. P. 1900. Notes on American species of Dadoxylon. Transactions of the Royal Society of Canada 6, 5197.Google Scholar
Read, C. B. 1936. A Devonian flora from Kentucky. Journal of Paleontology 10, 215–27.Google Scholar
Read, C. B. & Campbell, G. 1939. Preliminary account of the New Albany Shale Flora. The American Midland Naturalist 21, 435–53.Google Scholar
Rothwell, G. W., Mapes, G. & Hernandez-Castillo, G. R. 2005. Reconstructing Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales) Taxon 54, 733–50.Google Scholar
Rothwell, G. W. & Mapes, G. 2001. Barthelia furcata gen. et sp. nov., with a review of Paleozoic coniferophytes and a discussion of coniferophyte systematics. International Journal of Plant Sciences 162, 637–67.Google Scholar
Scheckler, S. E. 1986. Geology, floristics and paleoecology of Late Devonian coal swamps from Appalachian Laurentia (U.S.A.). Annales de la Société Géologique de Belgique 109, 209–22.Google Scholar
Schmalhausen, J. 1894. Über Devonische Pflanzen aus den Donetz-Becken. Mémoire du Comité Géologique de Saint Petersbourg 8, 136.Google Scholar
Schneider, C. A.Rasband, W. S. & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7), 671675. PMID 22930834. Google Scholar
Snigirevskaya, N. S. & Lemoigne, Y. 1990. Nouveau gisement Dévonien à Callixylon dans le centre de la Sibérie: conséquences pour la phytogéographie, la climatologie et les relations continentales au Dévonien Supérieur. Comptes Rendus de l'Académie des Sciences Paris, Série II 311, 1557–62.Google Scholar
Snigirevskaya, N. S. & Snigirevsky, S. M. 2001. New locality of Callixylon (Archaeopteridaceae) in the Late Devonian of Andoma Mountain (Vologda Region, north-west Russia) and its importance for the reconstruction of archaeopterid distribution. Acta Palaeobotanica 41, 97105.Google Scholar
Soria, A., Meyer-Berthaud, B. & Scheckler, S. E. 2001. Reconstructing the architecture and growth habit of Pietzchia levis sp. nov. (Cladoxylopsida) from the Late Devonian of southeastern Morocco. International Journal of Plant Sciences 162, 911–26.Google Scholar
Soria, A. & Meyer-Berthaud, B. 2004. Tree fern growth strategy in the Late Devonian cladoxylopsid species Pietzchia levis from the study of its stem and root system. American Journal of Botany 91, 1023.Google Scholar
Taylor, T. N., Taylor, E. L. & Krings, M. 2009. Paleobotany. The Biology and Evolution of Fossil Plants. Second Edition. Amsterdam: Academic Press. 1252 pp.Google Scholar
Trivett, M. L. 1993. An architectural analysis of Archaeopteris, a fossil tree with pseudomonopodial and opportunistic adventitious growth. Botanical Journal of the Linnean Society 111, 301–29.Google Scholar
White, D. 1988. Flora fossil das Coal Measures do Brasil. In Ulbrich, H. & Rocha Campos, A. C. (eds) Proceedings of Seventh International Gondwana Symposium (Sao Paulo, Brazil), 341617. São Paulo: Instituto de Geociências-USP. xvi+714 pp.Google Scholar
Zalessky, M. D. 1909. Communication préliminaire sur un nouveau Dadoxylonà faisceaux de bois primaire autour de la moëlle, provenant du Dévonien supérieur du bassin du Donetz. Bulletin de l'Académie des Sciences de Saint Petersbourg, IV série 18, 1175–78.Google Scholar
Zalessky, M. D. 1911. Etude sur l'anatomie du Dadoxylon tchihatcheffi Goeppert. Mémoire du Comité Géologique de Russie, N. S. 68, 129.Google Scholar
Zimmermann, W. 1930. Die Phylogenie des Pflanzen. Jena: Gustav Fischer.Google Scholar