No CrossRef data available.
Published online by Cambridge University Press: 07 October 2019
We summarise numerical and analogue models of shape fabrics, and discuss their applicability to the shape preferred orientation of crystals in magmas. Analyses of flow direction and finite strain recorded during the emplacement of partially crystallised magmas often employ the analytical and numerical solutions of the Jeffery's model, which describe the movement of noninteracting ellipsoidal particles immersed in a Newtonian fluid. Crystallising magmas, however, are considered as dynamic fluid systems in which particles nucleate and grow. Crystallisation during magma deformation leads to mechanical interactions between crystals whose shape distribution is not necessarily homogeneous and constant during emplacement deformation. Experiments carried out in both monoparticle and multiparticle systems show that shape fabrics begin to develop early in the deformation history and evolve according to the theoretical models for low-strain regimes. At large strains and increasing crystal content, the heterogeneous size distribution of natural crystals and contact interactions tend to generate steady-state fabrics with a lineation closely parallel to the direction of the magmatic flow. This effect has been observed in all threedimensional experiments with particles of similar size and for strain regimes of high vorticity. On the other hand, studies of feldspar megacryst sub-fabrics in porphyritic granites suggest that these record a significant part of the strain history. Thus, the fabric ellipsoid for megacrysts evolves closer to the strain ellipsoid than for smaller markers. This behaviour results from the fact that the matrix forms of the melt and smaller crystals behave like a continuous medium relative to the megacrysts. Consequently, in the absence of these markers, and because the fabric intensities of smaller particles such as biotite are stable and lower than predicted by the theory, finite strain remains indeterminate. In that case, strain quantification and geometry of the flow requires the addition of external constraints based on other structural approaches.