Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T04:07:24.175Z Has data issue: false hasContentIssue false

Impact of Gene Editing Tools, Like CRISPR/Cas9, on the Public Health Response to Disease Outbreaks

Published online by Cambridge University Press:  19 September 2016

Samuel M. Pope*
Affiliation:
Biomedical Sciences Division, Marian University College of Osteopathic Medicine, Indianapolis, Indiana.
*
Correspondence and reprint requests to Samuel M. Pope, PhD, JD, Associate Professor of Immunology and Microbiology, Marian University College of Osteopathic Medicine, 3200 Cold Spring Rd, Indianapolis, IN 46022 (e-mail: [email protected]).

Abstract

The purpose of this communication is to explore the implications of genome editing techniques, such as CRISPR/Cas9, on public health–related responses to outbreaks of disease. The recent commercialization of genome editing techniques makes the creation and release of genetically altered pathogens a much easier task, increasing the possibility to the point of needing discussion. Three areas need to be addressed: predictions concerning potential genetic alterations, predictions and implications concerning the release of genetically altered pathogens, and the short- and long-term implications of the release of genetically altered pathogens. Full discourse on these topics among professionals in the area of public health will help to combat harm from the use of any genetically altered biologic weapons. The topics covered here include a review of the CRISPR/Cas9 gene editing technique, including a discussion of which possibilities utilize genome editing. We then address predictions about the application of gene alterations in the context of bioweapons. We discuss a few basic concepts about the evolution of an intentionally released genetically altered organism based on circumstances and patterns gleaned from observing nature in the hope that this will aid in the public health response to bioterrorism attack. (Disaster Med Public Health Preparedness. 2017;11:155–159)

Type
Commentaries
Copyright
Copyright © Society for Disaster Medicine and Public Health, Inc. 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ledford, H. CRISPR, the disruptor. Nature. 2015;522(7554):20-24. http://dx.doi.org/10.1038/522020a.CrossRefGoogle ScholarPubMed
2. Grissa, I, Vergnaud, G, Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007;8(1):172. http://dx.doi.org/10.1186/1471-2105-8-172.Google Scholar
3. Hendriks, WT, Jiang, X, Daheron, L, et al. TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol. 2015;34:5B.3.1-5B.3.25.CrossRefGoogle ScholarPubMed
4. Liang, P, Xu, Y, Zhang, X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363-372. http://dx.doi.org/10.1007/s13238-015-0153-5.Google Scholar
5. Auer, TO, Duroure, K, De Cian, A, et al. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 2014;24(1):142-153. http://dx.doi.org/10.1101/gr.161638.113.CrossRefGoogle ScholarPubMed
6. Ma, Y, Ma, J, Zhang, X, et al. Generation of eGFP and Cre knockin rats by CRISPR/Cas9. FEBS J. 2014;281(17):3779-3790. http://dx.doi.org/10.1111/febs.12935.Google Scholar
7. Nakayama, T, Fish, MB, Fisher, M, et al. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis. 2013;51(12):835-843. http://dx.doi.org/10.1002/dvg.22720.Google Scholar
8. Sakuma, T, Nishikawa, A, Kume, S, et al. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep. 2014;4:5400. http://dx.doi.org/10.1038/srep05400.Google Scholar
9. Wei, C, Liu, J, Yu, Z, et al. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J Genet Genomics. 2013;40(6):281-289. doi: 10.1016/j.jgg.2013.03.013.Google Scholar
10. Cyranoski, D, Reardon, S. Embryo editing sparks epic debate. Nature. 2015;520(7549):593-594. http://dx.doi.org/10.1038/520593a.Google Scholar
11. Kaplan, EH, Craft, DL, Wein, LM. Analyzing bioterror response logistics: the case of smallpox. Math Biosci. 2003;185(1):33-72. http://dx.doi.org/10.1016/S0025-5564(03)00090-7.Google Scholar
12. Centers for Disease Control and Prevention. Recognition of illness associated with the intentional release of a biologic agent. MMWR Morb Mortal Wkly Rep. 2001;50(41):893-897.Google Scholar
13. Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup. MMWR Recomm Rep. 2000;49(RR-4):1-14.Google Scholar
14. Dembek, ZF, Kortepeter, MG, Pavlin, JA. Discernment between deliberate and natural infectious disease outbreaks. Epidemiol Infect. 2007;135(3):353-371. http://dx.doi.org/10.1017/S0950268806007011.Google Scholar
15. Gilchrist, CA, Turner, SD, Riley, MF, et al. Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev. 2015;28(3):541-563. http://dx.doi.org/10.1128/CMR.00075-13.Google Scholar
16. Karlsson, OE, Hansen, T, Knutsson, R, et al. Metagenomic detection methods in biopreparedness outbreak scenarios. Biosecur Bioterror. 2013;11(S1)(suppl 1):S146-S157. http://dx.doi.org/10.1089/bsp.2012.0077.Google Scholar
17. Graessler, J, Qin, Y, Zhong, H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514-522. http://dx.doi.org/10.1038/tpj.2012.43.CrossRefGoogle ScholarPubMed
18. Kuczynski, J, Costello, EK, Nemergut, DR, et al. Direct sequencing of the human microbiome readily reveals community differences. Genome Biol. 2010;11(5):210. http://dx.doi.org/10.1186/gb-2010-11-5-210.Google Scholar
19. Yang, X, Noyes, NR, Doster, E, et al. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl Environ Microbiol. 2016;82(8):2433-2443. http://dx.doi.org/10.1128/AEM.00078-16.Google Scholar
20. National Research Council, Committee on Scientific Milestones for the Development of a Gene Sequence-Based Classification System for the Oversight of Select Agents. Sequence-Based Classification of Select Agents: A Brighter Line. Washington, DC: National Academies Press; 2010.Google Scholar
21. Giraud, A, Matic, I, Tenaillon, O, et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science. 2001;291(5513):2606-2608. http://dx.doi.org/10.1126/science.1056421.CrossRefGoogle ScholarPubMed
22. Denamur, E, Matic, I. Evolution of mutation rates in bacteria. Mol Microbiol. 2006;60(4):820-827. http://dx.doi.org/10.1111/j.1365-2958.2006.05150.x.CrossRefGoogle ScholarPubMed
23. Sung, W, Ackerman, MS, Miller, SF, et al. Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci USA. 2012;109(45):18488-18492. http://dx.doi.org/10.1073/pnas.1216223109.Google Scholar
24. Rysz, M, Mansfield, WR, Fortner, JD, et al. Tetracycline resistance gene maintenance under varying bacterial growth rate, substrate and oxygen availability, and tetracycline concentration. Environ Sci Technol. 2013;47(13):6995-7001.Google Scholar
25. Cowie, BC, Dore, GJ. The perpetual challenge of infectious diseases [letter]. N Engl J Med. 2012;367(1):89-90. http://dx.doi.org/10.1056/NEJMc1202013.Google ScholarPubMed
26. Fauci, AS, Morens, DM. The perpetual challenge of infectious diseases. N Engl J Med. 2012;366(5):454-461. http://dx.doi.org/10.1056/NEJMra1108296.CrossRefGoogle ScholarPubMed
27. Parks, T, Hill, AV, Chapman, SJ. The perpetual challenge of infectious diseases [letter]. N Engl J Med. 2012;367(1):90. http://dx.doi.org/10.1056/NEJMc1202013.Google Scholar
28. Murray, MJ. Ebola virus disease: a review of its past and present. Anesth Analg. 2015;121(3):798-809. http://dx.doi.org/10.1213/ANE.0000000000000866.Google Scholar