Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:11:57.934Z Has data issue: false hasContentIssue false

Cost of Ecosystem Service Value Due to Rohingya Refugee Influx in Bangladesh

Published online by Cambridge University Press:  27 June 2022

Showmitra Kumar Sarkar*
Affiliation:
Department of Urban and Regional Planning, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh
Md. Mustafa Saroar
Affiliation:
Department of Urban and Regional Planning, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh
Tanmoy Chakraborty
Affiliation:
Department of Urban and Regional Planning, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh
*
Corresponding author: Showmitra Kumar Sarkar, E-mail: [email protected].

Abstract

Objective:

The objective of the research is to estimate the cost of ecosystem service value (ESV) due to the Rohingya refugee influx in Ukhiya and Teknaf upazilas of Bangladesh.

Methods:

Artificial neural network (ANN) supervised classification technique was used to estimate land use/land cover (LULC) dynamics between 2017 (ie, before the Rohingya refugee influx) and 2021. The ESV changes between 2017 and 2021 were assessed using the benefit transfer approach.

Results:

According to the findings, the forest lost 54.88 km2 (9.58%) because of the refugee influx during the study. Around 47.26 km2 (8.25%) of settlement was increased due to the need to provide shelter for Rohingya refugees in camp areas. Due to the increase in Rohingya refugee settlements, the total ESV increased from US $310.13 million in 2017 to US $332.94 million in 2021. Because of the disappearance of forest areas, the ESV for raw materials and biodiversity fell by 13.58% and 14.57%, respectively.

Conclusion:

Natural resource conservation for long-term development will benefit from the findings of this study.

Type
Original Research
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ecosystems and Human Well-Being: A Framework for Assessment. Millennium Ecosystem Assessment. Published 2003. Accessed April 22, 2022. http://www.millenniumassessment.org/en/Framework.html Google Scholar
Costanza, R, D’Arge, R, De Groot, R, et al. The value of the world’s ecosystem services and natural capital. Nature. 1997;387(6630):253-260. doi: 10.1038/387253a0 Google Scholar
Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Opportunities and Challenges for Business and Industry. World Resources Institute, Washington, DC. 2005. https://www.millenniumassessment.org/documents/document.353.aspx.pdf Google Scholar
Ecosystems and Human Wellbeing. Millennium Ecosystem Assessment. Published 2005:1-155. Accessed April 26, 2022. https://stg-wedocs.unep.org/handle/20.500.11822/8780 Google Scholar
Costanza, R, de Groot, R, Braat, L, et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst Serv. 2017;28:1-16. doi: 10.1016/j.ecoser.2017.09.008 CrossRefGoogle Scholar
Lapointe, M, Gurney, GG, Cumming, GS. Urbanization alters ecosystem service preferences in a Small Island Developing State. Ecosyst Serv. 2020;43:101109. doi: 10.1016/j.ecoser.2020.101109 Google Scholar
Chen, J, Sun, BM, Chen, D, et al. Land use changes and their effects on the value of ecosystem services in the small Sanjiang plain in China. Sci World J. 2014;2014. doi: 10.1155/2014/752846 CrossRefGoogle Scholar
Alqadhi, S, Mallick, J, Talukdar, S, et al. Assessing the effect of future landslide on ecosystem services in Aqabat Al-Sulbat region, Saudi Arabia. Nat Hazards. Published online March 29, 2022. doi: 10.1007/s11069-022-05318-7 CrossRefGoogle Scholar
Mallick, J, Alqadhi, S, Talukdar, S, et al. Modelling and mapping of landslide susceptibility regulating potential ecosystem service loss: an experimental research in Saudi Arabia. Geocarto Int. Published online 21 January 2022. doi: 10.1080/10106049.2022.2032393 Google Scholar
Su, S, Xiao, R, Jiang, Z, Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl Geogr. 2012;34:295-305. doi: 10.1016/j.apgeog.2011.12.001 Google Scholar
Costanza, R, de Groot, R, Sutton, P, et al. Changes in the global value of ecosystem services. Glob Environ Chang. 2014;26(1):152-158. doi: 10.1016/j.gloenvcha.2014.04.002 Google Scholar
Sannigrahi, S, Chakraborti, S, Joshi, PK, et al. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J Environ Manage. 2019;244:208-227. doi: 10.1016/j.jenvman.2019.04.095 Google ScholarPubMed
Sheng, HX, Xu, H, Zhang, L, Chen, W. Ecosystem intrinsic value and its application in decision-making for sustainable development. J Nat Conserv. 2019;49:27-36. doi: 10.1016/j.jnc.2019.01.008 Google Scholar
Yirsaw, E, Wu, W, Shi, X, et al. Land Use/Land Cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang region. Sustain. 2017;9(7):1-17. doi: 10.3390/su9071204 Google Scholar
Hassan, MM, Smith, AC, Walker, K, et al. Rohingya refugee crisis and forest cover change in Teknaf, Bangladesh. Remote Sens. 2018;10(5):1-20. doi: 10.3390/rs10050689 CrossRefGoogle Scholar
Al Shogoor, S, Sahwan, W, Hazaymeh, K, et al. Evaluating the impact of the influx of Syrian refugees on land use/land cover change in Irbid District, Northwestern Jordan. Land. 2022;11(3):372. doi: 10.3390/land11030372 CrossRefGoogle Scholar
Parashar, A, Alam, J. The national laws of Myanmar: making of statelessness for the Rohingya. Int Migr. 2019;57(1):94-108. doi: 10.1111/imig.12532 CrossRefGoogle Scholar
Rashid, KJ, Hoque, MA, Esha, TA, et al. Spatiotemporal changes of vegetation and land surface temperature in the refugee camps and its surrounding areas of Bangladesh after the Rohingya influx from Myanmar. Environ Dev Sustain. 2021;23(3):3562-3577. doi: 10.1007/s10668-020-00733-x CrossRefGoogle Scholar
Hossain, F, Moniruzzaman, DM. Environmental change detection through remote sensing technique: a study of Rohingya refugee camp area (Ukhia and Teknaf sub-district), Cox’s Bazar, Bangladesh. Environ Challenges. 2021;2:100024. doi: 10.1016/j.envc.2021.100024 CrossRefGoogle Scholar
Hasan, ME, Zhang, L, Dewan, A, et al. Spatiotemporal pattern of forest degradation and loss of ecosystem function associated with Rohingya influx: a geospatial approach. L Degrad Dev. 2020;1942. doi: 10.1002/ldr.3821 CrossRefGoogle Scholar
Chien, Shih H, Stow, DA, Tsai, YH. Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. Int J Remote Sens. 2019;40(4):1248-1274. doi: 10.1080/01431161.2018.1524179 Google Scholar
Carranza-García, M, García-Gutiérrez, J, Riquelme, JC. A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sens. 2019;11(3):274. doi: 10.3390/rs11030274 CrossRefGoogle Scholar
Srivastava, PK, Han, D, Rico-Ramirez, MA, et al. Selection of classification techniques for land use/land cover change investigation. Adv Sp Res. 2012;50(9):1250-1265. doi: 10.1016/j.asr.2012.06.032 CrossRefGoogle Scholar
Raczko, E, Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur J Remote Sens. 2017;50(1):144-154. doi: 10.1080/22797254.2017.1299557 CrossRefGoogle Scholar
Shahab-Ul-Islam, Abbas AW, Ahmad, A, et al. Parameter investigation of artificial neural network and support vector machine for image classification. In: Proceedings of 2017 14th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2017. 2017:795-798. doi: 10.1109/IBCAST.2017.7868146 CrossRefGoogle Scholar
de Groot, R, Brander, L, van der Ploeg, S, et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv. 2012;1(1):50-61. doi: 10.1016/j.ecoser.2012.07.005 CrossRefGoogle Scholar
Arowolo, AO, Deng, X, Olatunji, OA, Obayelu, AE. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci Total Environ. 2018;636:597-609. doi: 10.1016/j.scitotenv.2018.04.277 CrossRefGoogle ScholarPubMed
Talukdar, S, Singha, P, Shahfahad, et al. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol Indic. 2020;112:106121. doi: 10.1016/j.ecolind.2020.106121 CrossRefGoogle Scholar
Li, J, Chen, H, Zhang, C, Pan, T. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995-2035. Peer J. 2019;2019(9):1-22. doi: 10.7717/peerj.7665 Google Scholar
Ahmed, B, Rahman, MS, Sammonds, P, et al. Application of geospatial technologies in developing a dynamic landslide early warning system in a humanitarian context: the Rohingya refugee crisis in Cox’s Bazar, Bangladesh. Geomatics Nat Hazards Risk. 2020;11(1):446-468. doi: 10.1080/19475705.2020.1730988 CrossRefGoogle Scholar
UNHCR. Population factsheet. Refugee population figure. Total refugee population. Refugee population density. Place of origin. Period of arrival. 2018:15-18. Published 30 September 2019. https://data2.unhcr.org/en/situations/myanmar_refugees Google Scholar
UNHCR. Population map: UNHCR, Bangladesh, Cox’s Bazar – as of 15 August 2019. Published 2019. Accessed March 10, 2022. https://data2.unhcr.org/en/documents/details/70839 Google Scholar
Fernandes, ACM, Gonzalez, RQ, Lenihan-Clarke, MA, et al. Machine learning for conservation planning in a changing climate. Sustain. 2020;12(18):7657. doi: 10.3390/su12187657 CrossRefGoogle Scholar
Zhao, Q, Yu, S, Zhao, F, et al. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For Ecol Manage. 2019;434:224-234. doi: 10.1016/j.foreco.2018.12.019 CrossRefGoogle Scholar
Yilmaz, I, Kaynar, O. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl. 2011;38(5):5958-5966. doi: 10.1016/j.eswa.2010.11.027 CrossRefGoogle Scholar
Gong, P, Ruilianp, P, Bin, Y. Conifer species recognition: an exploratory analysis of in situ hyperspectral data. Remote Sens Environ. 1997;62(2):189-200. doi: 10.1016/S0034-4257(97)00094-1 CrossRefGoogle Scholar
Sannigrahi, S, Bhatt, S, Rahmat, S, et al. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J Environ Manage. 2018;223:115-131. doi: 10.1016/j.jenvman.2018.05.091 CrossRefGoogle ScholarPubMed
Kreuter, UP, Harris, HG, Matlock, MD, Lacey, RE. Change in ecosystem service values in the San Antonio area, Texas. Ecol Econ. 2001;39(3):333-346. doi: 10.1016/S0921-8009(01)00250-6 CrossRefGoogle Scholar
Kindu, M, Schneider, T, Teketay, D, Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Sci Total Environ. 2016;547:137-147. doi: 10.1016/j.scitotenv.2015.12.127 CrossRefGoogle ScholarPubMed