Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-24T23:12:49.224Z Has data issue: false hasContentIssue false

Coping with Unknown Health Crisis via Social Media: A Content Analysis of Online Mutual Aid Group in the Beginning of the COVID-19 Pandemic

Published online by Cambridge University Press:  28 October 2024

Yu Guo
Affiliation:
Faculty of Humanities and Arts, Macau University of Science and Technology, Macau SAR, China
Hongzhe Xiang*
Affiliation:
Faculty of Humanities and Arts, Macau University of Science and Technology, Macau SAR, China
Yongkang Hou
Affiliation:
Faculty of Humanities and Arts, Macau University of Science and Technology, Macau SAR, China
*
Corresponding author: Hongzhe Xiang; Email: [email protected]

Abstract

Objective

The initial emergence of SARS-CoV-2 created uncertainty for humanity, driving people to seek assistance on social media. This study aims to understand the role of social media in coping with crises and to offer guidance for future uncertainties by examining the experiences of Wuhan during the early stages of the pandemic.

Methods

Using quantitative content analysis, this study investigated 2207 Weibo posts tagged with “COVID-19 Mutual Aid” from individuals located in Wuhan during the early lockdown period from January 23, 2020, to March 23, 2020.

Results

At the start of pandemic, messages seeking tangible support were most common. A hurdle regression model showed that deeper self-disclosure led to more retransmission of help-seeking messages. The Chi-Square and Mann-Whitney U tests revealed that health professionals and laypeople had different self-disclosure strategies.

Conclusions

This study provides insight into the online social support exchange during the early stages of the COVID-19 pandemic in Wuhan, highlighting the importance of self-disclosure on message retransmission, and the differences in self-disclosure strategies between health professionals and laypeople in online help-seeking.

Type
Original Research
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Wen, M, Zhang, S, McGhee, D. From preventing physical infection to managing affective contagion: an initial study of daily nursing practices in the early outbreak of the COVID-19 pandemic in WuhanSoc Sci Med. 2023;329:116033. doi:10.1016/j.socscimed.2023.116033CrossRefGoogle ScholarPubMed
Cousins, S. WHO hedges its bets: the next global pandemic could be disease XBMJ. Published online May 10, 2018:k2015. doi:10.1136/bmj.k2015Google Scholar
FeldmanHall, O, Shenhav, A. Resolving uncertainty in a social worldNat Hum Behav. 2019;3(5):426435. doi:10.1038/s41562-019-0590-xCrossRefGoogle Scholar
Zhu, H, Wei, L, Niu, P. The novel coronavirus outbreak in Wuhan, ChinaGlob Health Res Policy. 2020;5(1). doi:10.1186/s41256-020-00135-6CrossRefGoogle ScholarPubMed
El Zowalaty, ME, Järhult, JD. From SARS to COVID-19: a previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans – Call for a One Health approachOne Health. 2020;9:100124. doi:10.1016/j.onehlt.2020.100124CrossRefGoogle ScholarPubMed
Callard, F, Perego, E. How and why patients made Long CovidSoc Sci Med. 2021;268:113426. doi 10.1016/j.socscimed.2020.113426CrossRefGoogle ScholarPubMed
Jin, YH, Cai, L, Cheng, ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)Military Med Res. 2020;7(1). doi:10.1186/s40779-020-0233-6CrossRefGoogle ScholarPubMed
Russell, D, Spence, NJ, Chase, JAD, et al. Support amid uncertainty: Long COVID illness experiences and the role of online communitiesSSM Qual Res Health. 2022;2:100177. doi:10.1016/j.ssmqr.2022.100177CrossRefGoogle ScholarPubMed
Qian, Y, Hanser, A. How did Wuhan residents cope with a 76-day lockdown? Chinese Sociol Rev. 2020;53(1):5586. doi:10.1080/21620555.2020.1820319CrossRefGoogle Scholar
Cheng, P, Xia, G, Pang, P, et al. COVID-19 epidemic peer support and crisis intervention via social mediaCommunity Ment Health J. 2020;56(5):786792. doi:10.1007/s10597-020-00624-5CrossRefGoogle ScholarPubMed
Guo, Y, Hou, Y, Xiang, H, et al.Help Us!”: a content analysis of COVID-19 help-seeking posts on Weibo during the first lockdownBMC Public Health. 2023;23(1). doi:10.1186/s12889-023-15578-yCrossRefGoogle Scholar
Hanson, S, Belderson, P, Ward, E, et al. Lest we forget. Illuminating lived experience of the Covid-19 pandemic and lockdown. Soc Sci Med. Published online July 2023:116080. doi:10.1016/j.socscimed.2023.116080CrossRefGoogle Scholar
Jong, W, Liang, OS, Yang, CC. The exchange of informational support in online health communities at the onset of the COVID-19 pandemic: content analysis (preprint). JMIRx Med. Published online January 26, 2021. doi:10.2196/27485CrossRefGoogle Scholar
Schuchat, A. Public health response to the initiation and spread of pandemic COVID-19 in the United States, February 24–April 21, 2020MMWR Morb Mortal Wkly Rep. 2020;69(18):551556. doi:10.15585/mmwr.mm6918e2CrossRefGoogle Scholar
Saud, M, Mashud, M, Ida, R. Usage of social media during the pandemic: seeking support and awareness about COVID-19 through social media platforms. J Public Aff. Published online September 15, 2020:e02417. doi:10.1002/pa.2417CrossRefGoogle Scholar
Seiter, CR, Brophy, NS. Social support and aggressive communication on social network sites during the COVID-19 pandemicHealth Commun. 2021;37(10):12951304. doi:10.1080/10410236.2021.1886399CrossRefGoogle ScholarPubMed
Derlega, VJ, Metts, S, Petronio, S, et al. Self-Disclosure. Sage; 1993.Google Scholar
Mesch, GS, Beker, G. Are norms of disclosure of online and offline personal information associated with the disclosure of personal information online? Hum Commun Res. 2010;36(4):570592. doi:10.1111/j.1468-2958.2010.01389.xCrossRefGoogle Scholar
Luo, C, Li, Y, Chen, A, et al. What triggers online help-seeking retransmission during the COVID-19 period? Empirical evidence from Chinese social mediaPLoS One. 2020;15(11):e0241465. doi:10.1371/journal.pone.0241465CrossRefGoogle ScholarPubMed
Stvilia, B, Mon, L, Yi, YJ. A model for online consumer health information qualityJ Am Soc Inf Sci Tec. 2009;60(9):17811791. doi:10.1002/asi.21115CrossRefGoogle Scholar
Bates, BR, Romina, S, Ahmed, R, et al. The effect of source credibility on consumers’ perceptions of the quality of health information on the InternetMedical Inform Internet Med. 2006;31(1):4552. doi:10.1080/14639230600552601CrossRefGoogle ScholarPubMed
Barry, CL, Schamber, L. Users’ criteria for relevance evaluation: a cross-situational comparisonInform Process Manag. 1998;34(2-3):219236. doi:10.1016/s0306-4573(97)00078-2CrossRefGoogle Scholar
Cline, RJW, Haynes, KM. Consumer health information seeking on the Internet: the state of the artHealth Educ Res. 2001;16(6):671692. doi:10.1093/her/16.6.671CrossRefGoogle ScholarPubMed
Eysenbach, G, Powell, J, Kuss, O, et al. Empirical studies assessing the quality of health information for consumers on the world wide webJAMA. 2002;287(20):2691. doi:10.1001/jama.287.20.2691CrossRefGoogle ScholarPubMed
Pan, W, Feng, B, Skye Wingate, V. What you say is what you get: how self-disclosure in support seeking affects language use in support provision in online support forumsJ Lang Soc Psychol. 2017;37(1):327. doi:10.1177/0261927x17706983CrossRefGoogle Scholar
Wingate, VS, Feng, B, Kim, C, et al. The influence of self-disclosure in online support seeking on quality of received adviceJ Lang Soc Psychol. 2020;39(3):397413. doi:10.1177/0261927x20911989CrossRefGoogle Scholar
Liu, X, Lu, J, Wang, H. When health information meets social media: exploring virality on Sina WeiboHealth Commun. 2016;32(10):12521260. doi:10.1080/10410236.2016.1217454CrossRefGoogle ScholarPubMed
Wang, X, Chen, L, Shi, J, et al. What makes cancer information viral on social media? Comput Hum Behav. 2019;93:149156. doi:10.1016/j.chb.2018.12.024CrossRefGoogle Scholar
Yang, Q, Tufts, C, Ungar, L, et al. To retweet or not to retweet: understanding what features of cardiovascular tweets influence their retransmissionJ Health Commun. 2018;23(12):10261035. doi:10.1080/10810730.2018.1540671CrossRefGoogle ScholarPubMed
Zhu, J, Ji, P, Pang, J, et al. Clinical characteristics of 3062 COVID‐19 patients: a meta‐analysisJ Med Virol. 2020;92(10):19021914. doi:10.1002/jmv.25884CrossRefGoogle ScholarPubMed
Huang, HY. Examining the beneficial effects of individual’s self-disclosure on the social network siteComput Hum Behav. 2016;57:122132. doi:10.1016/j.chb.2015.12.030CrossRefGoogle Scholar
Kanne, JP, Bai, H, Bernheim, A, et al. COVID-19 imaging: what we know now and what remains unknownRadiology. 2021;299(3):E262E279. doi:10.1148/radiol.2021204522CrossRefGoogle ScholarPubMed
Kwee, TC, Kwee, RM. Chest CT in COVID-19: what the radiologist needs to knowRadioGraphics. 2020;40(7):18481865. doi:10.1148/rg.2020200159CrossRefGoogle ScholarPubMed
Barrera, M Jr. Distinctions between social support concepts, measures, and modelsAM J Commun Psychol. 1986;14(4):413445. doi:10.1007/bf00922627CrossRefGoogle Scholar
Glanz, K, Rimer, BK, Viswanath, K. Health Behavior and Health Education: Theory, Research, and Practice. 4th ed. Jossey-Bass; 2008.Google Scholar
Luo, C, Ji, K, Tang, Y, Du, Z. Exploring the expression differences between professionals and laypeople toward the COVID-19 vaccine: text mining approachJ Med Internet Res. 2021;23(8):e30715. doi:10.2196/30715CrossRefGoogle ScholarPubMed
Albarrak, AI, Mohammed, R, Al Elayan, A, et al. Middle East Respiratory Syndrome (MERS): comparing the knowledge, attitude and practices of different health care workersJ Infect Public Health. 2021;14(1):8996. doi:10.1016/j.jiph.2019.06.029CrossRefGoogle ScholarPubMed
Chaudhuri, A, Mukherjee, A, Chakraborty, S, et al. A study to compare the correlation of perceived stress and insomnia between health professionals and other employees in a government medical college of Eastern IndiaCurr Med Issues. 2022;20(1):22. doi:10.4103/cmi.cmi_88_21Google Scholar
Hafiz, TA, D’Sa, JL, Zamzam, S, et al. Helicobacter pylori infection: comparison of knowledge between health science and non-health science university studentsInt J Env Res Public Health. 2021;18(15):8173. doi:10.3390/ijerph18158173CrossRefGoogle ScholarPubMed
Larrouy-Maestri, P, Magis, D, Grabenhorst, M, et al. Layman versus professional musician: who makes the better judge? PLoS One. 2015;10(8):e0135394. doi:10.1371/journal.pone.0135394CrossRefGoogle ScholarPubMed
Covello, VT, Flamm, WG, Rodricks, JV, et al. The Analysis of Actual Versus Perceived Risks. Springer; 1983.CrossRefGoogle Scholar
Cutrona, CE, Suhr, JA. Controllability of stressful events and satisfaction with spouse support behaviorsCommun Res. 1992;19(2):154174. doi:10.1177/009365092019002002CrossRefGoogle Scholar
Zhong, L, Zhang, S, Wang, J, et al. Analysis of chest CT results of coronavirus disease 2019 (COVID-19) patients at first follow-upCan Respir J. 2020;2020:18. doi:10.1155/2020/5328267CrossRefGoogle ScholarPubMed
Curran, PJ, West, SG, Finch, JF. The robustness of test statistics to nonnormality and specification error in confirmatory factor analysisPsychol Methods. 1996;1(1):1629. doi:10.1037/1082-989x.1.1.16CrossRefGoogle Scholar
Oztig, LI, Askin, OE. Human mobility and coronavirus disease 2019 (COVID-19): a negative binomial regression analysisPublic Health. 2020;185:364367. doi:10.1016/j.puhe.2020.07.002CrossRefGoogle ScholarPubMed
Denham, BE. Poisson and negative binomial regression. In: Denham, BE, ed. Categorical Statistics for Communication Research. John Wiley & Sons, Ltd; 2017:216231. Accessed August 7, 2023. https://doi.org/10.1002/9781119407201.ch10Google Scholar
Xie, J, Liu, L. Identifying features of source and message that influence the retweeting of health information on social media during the COVID-19 pandemic. BMC Public Health. 2022;22(1). doi:10.1186/s12889-022-13213-wCrossRefGoogle ScholarPubMed
Muniz-Rodriguez, K, Schwind, JS, Yin, J, et al. Exploring social media network connections to assist during public health emergency response: a retrospective case-study of Hurricane Matthew and Twitter users in Georgia, USA. Disaster Med Public. 2023;17. doi:10.1017/dmp.2022.285CrossRefGoogle Scholar
Feng, CX. A comparison of zero-inflated and hurdle models for modeling zero-inflated count dataJ Stat Distrib Appl. 2021;8(1):119. doi:10.1186/s40488-021-00121-4CrossRefGoogle ScholarPubMed
Cameron, AC, Trivedi, PKMicroeconometrics: Methods and Applications. Cambridge University Press; 2005. Accessed November 25, 2023. https://doi.org/10.1017/cbo9780511811241CrossRefGoogle Scholar
Yin, F, Lv, J, Zhang, X, et al. COVID-19 information propagation dynamics in the Chinese Sina-microblogMath Biosci Eng. 2020;17(3):26762692. doi:10.3934/mbe.2020146CrossRefGoogle ScholarPubMed
Liu, Y, Zhu, Y, Xia, Y. Support-seeking strategies and social support provided in Chinese online health communities related to COVID-19Front Psychol. 2021;12. doi:10.3389/fpsyg.2021.783135Google ScholarPubMed
Pickles, H. Using lessons from the past to plan for pandemic fluBMJ. 2006;332(7544):783.1786. doi:10.1136/bmj.332.7544.783CrossRefGoogle ScholarPubMed
Sidi, H. The psychological sequelae during mental health and COVID-19 pandemic: learning from the past for today’s coping stylesMed & Health. 2020;15(1):14. doi:10.17576/mh.2020.1501.01CrossRefGoogle Scholar
Szkody, E, Stearns, M, Stanhope, L, et al. Stress‐buffering role of social support during COVID‐19Fam Process. 2020;60(3):10021015. doi:10.1111/famp.12618CrossRefGoogle ScholarPubMed
Saltzman, LY, Hansel, TC, Bordnick, PS. Loneliness, isolation, and social support factors in post-COVID-19 mental healthPsychol Trauma-US. 2020;12(S1): S55S57. doi:10.1037/tra0000703CrossRefGoogle ScholarPubMed
Shah, K, Kamrai, D, Mekala, H, et al. Focus on mental health during the coronavirus (COVID-19) pandemic: applying learnings from the past outbreaks. Cureus. Published online March 25, 2020. doi:10.7759/cureus.7405CrossRefGoogle Scholar
Yu, H, Li, M, Li, Z, et al. Coping style, social support and psychological distress in the general Chinese population in the early stages of the COVID-19 epidemicBMC Psychiatry. 2020;20(1). doi:10.1186/s12888-020-02826-3CrossRefGoogle ScholarPubMed
Bode, L, Vraga, EK. See something, say something: correction of global health misinformation on social mediaHealth Commun. 2017;33(9):11311140. doi:10.1080/10410236.2017.1331312CrossRefGoogle ScholarPubMed
van der Meer, TGLA, Jin, Y. Seeking formula for misinformation treatment in public health crises: the effects of corrective information type and sourceHealth Commun. 2019;35(5):560575. doi:10.1080/10410236.2019.1573295CrossRefGoogle ScholarPubMed
Walter, N, Brooks, JJ, Saucier, CJ, et al. Evaluating the impact of attempts to correct health misinformation on social media: a meta-analysis. Health Commun. 2020;36(13):17761784. doi:10.1080/10410236.2020.1794553CrossRefGoogle ScholarPubMed
Qin, X, Yang, F, Jiang, Z, et al. Empathy not quarantined: social support via social media helps maintain empathy during the COVID-19 pandemicSoc Media Soc. 2022;8(1):205630512210862. doi:10.1177/20563051221086234Google Scholar
Umar, P, Akiti, C, Squicciarini, A, et al. Self-disclosure on Twitter during the COVID-19 pandemic: a network perspective. In: Dong, Y, Kourtellis, N, Hammer, B, Lozano, JA, eds. Machine Learning and Knowledge Discovery in Databases . Applied Data Science Track. Springer International Publishing; 2021:271286. Accessed August 7, 2023. https://doi.org/10.1007/978-3-030-86514-6_17CrossRefGoogle Scholar
Nabity-Grover, T, Cheung, CMK, Thatcher, JB. Inside out and outside in: how the COVID-19 pandemic affects self-disclosure on social media. Int J Inform Manage. 2020;55:102188. doi: 10.1016/j.ijinfomgt.2020.102188CrossRefGoogle ScholarPubMed
Liu, Z, Min, Q, Zhai, Q, et al. Self-disclosure in Chinese micro-blogging: a social exchange theory perspectiveInform Manage-Amster. 2016;53(1):5363. doi:10.1016/j.im.2015.08.006CrossRefGoogle Scholar
Kramer, NC, Haferkamp, N. Online self-presentation: balancing privacy concerns and impression construction on social networking sites. In: Trepte, S, Reinecke, L, eds. Privacy Online: Perspectives on Privacy and Self-Disclosure in the Social Web. Springer; 2011:127141.CrossRefGoogle Scholar
Do, BN, Tran, TV, Phan, DT, et al. Health literacy, eHealth literacy, adherence to infection prevention and control procedures, lifestyle changes, and suspected COVID-19 symptoms among health care workers during lockdown: online surveyJ Med Internet Res. 2020;22(11):e22894. doi:10.2196/22894CrossRefGoogle ScholarPubMed
Voigt-Barbarowicz, M, Dietz, G, Renken, N, et al. Patients’ health literacy in rehabilitation: comparison between the estimation of patients and health care professionalsInt J Env Res Public Health. 2022;19(6):3522. doi:10.3390/ijerph19063522CrossRefGoogle ScholarPubMed
Ciotti, M, Angeletti, S, Minieri, M, et al. COVID-19 outbreak: an overviewChemotherapy. 2019;64(5-6):215223. doi:10.1159/000507423CrossRefGoogle ScholarPubMed
Statistical Bulletin of National Economic and Social Development of Hubei Province in 2019. Hubei Provincial People’s Government. Published June 1, 2020. Accessed August 20, 2022. http://www.hubei.gov.cn/xxgk/zfbmwj/202006/t20200601_2373471.shtmlGoogle Scholar