Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T20:48:40.210Z Has data issue: false hasContentIssue false

The Architectonics of Scientific Knowledge an Essay On the Dynamics of the Sciences

Published online by Cambridge University Press:  02 April 2024

Alexandru Giuculescu*
Affiliation:
Institut d'informatique, Bucarest

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I. Science, myth, magic: three components of knowledge, in other words three types of activity in man who, in interaction with his surrounding environment seeks to accomodate himself to the constraints which this environment imposes on him while at the same time seeing to his own immediate or far-reaching needs.

Type
Research Article
Copyright
Copyright © 1985 Fédération Internationale des Sociétés de Philosophie / International Federation of Philosophical Societies (FISP)

References

Aristotle, Organon, I, Categories, Relation.Google Scholar
Berdiaeff, N., L'homme et la machine, translated from the Russian, Paris, 1933.Google Scholar
Bernard, Claude, Cahier de notes (1850-1860), ed. Grmek, M. Drazen, Paris, 1965, p. 149.Google Scholar
Blaga, Lucian, Fenomenul originar, Bucharest, 1925, new edition in Opere, vol. 1, Bucharest, 1980.Google Scholar
Blaga, Lucian, Trilogia culturii, Bucharest, 1944, pp. 377401.Google Scholar
Bourbaki, N., L'architecture des mathématiques, in Lionnais, F. Le (ed.), Les grands courants de la pensée mathématique, Cahiers du Sud, 1948.Google Scholar
Bourbaki, N., Eléments d'Histoire des mathématiques, 2nd ed., Paris, 1969.Google Scholar
Caveing, Maurice, La constitution du type mathématique de l'idéalité dans la pensée grecque, Lille, 1982, tome I, p. 2.Google Scholar
Claude, Chevalley, “Variations du style mathématique”, in Revue de Métaphysique et de Morale, 42 (July 1935), p. 375384.Google Scholar
Cohen, Paul; Hersch, Reuben, “Non-Cantorian Set Theory”, in Scientific American, Dec. 1967, pp. 104–16.Google Scholar
Dedekind, R., Stetigkeit und Irrationale Zahlen, Vorwort, 1872.Google Scholar
Jean, Dieudonné, “Mathématiques vides et mathématiques significatives”, in Penser les mathématiques, Paris, 1982, p. 31.Google Scholar
Pierre, Duhem, La théorie physique. Son objet et sa structure, Paris, 1906.Google Scholar
Eliade, Mircea, Aspects du mythe, Paris, 1963, pp. 220232.Google Scholar
Freund, Julien, L'essence du politique, Paris, 1966.Google Scholar
Giuculescu, Alexandru, “Die Stellung der Mathematik im Rationalismus des 17. Jahrhunderts”, in Studia Leibnitiana, Supplementa, vol. XXII, Wiesbaden, 1982, pp. 129137.Google Scholar
Giuculescu, Alexandru, “Arhitectonica teoriilor matematice. O abordare morfogenetică“ in Revista de filosofie, Jan.-Feb., 1982, pp. 5761.Google Scholar
Giuculescu, Alexandru, “Der Begriff des Unendlichen bei Leibniz und Cantor'’, in Liebniz, . Werk und Wirkung. Vorträge, Hannover, 1419, 1983, pp. 879–885.Google Scholar
Alexandru, Giuculescu, “La comparabilité des théories cybernétiques”, in Afcet (ed.), 6e Congrès international de cybernétique et de systémique, 10-14 Sept. 1984, Paris, 1984, vol. I, pp. 295–99.Google Scholar
Goethe, J.W., Farbenlehre, Didaktischer Teil, Historischer Teil; Zur Farbenlehre, Polemischer Teil.Google Scholar
Granger, Gilles Gaston, Essai d'une philosophie du style, Paris, 1968.Google Scholar
Heim, Karl, Die Wandlung im wissenschafilichen Weltbild, 3rd ed., Glückstadt, 1954.Google Scholar
Kant, I., Kritik der reinen Vernunft, Transcendentale Methodenlehre, Drittes Hauptstiick, Die Architektonik der reinen Vernunft.Google Scholar
Kuhn, Thomas, The Structure of Scientific Revolutions, 2nd ed., Chicago, 1970.Google Scholar
Levy-Bruhl, Lucien, La mentalité primitive, Paris, 1922.CrossRefGoogle Scholar
Lévi-Strauss, Claude, La pensée sauvage, Paris, 1962.Google Scholar
Malleson, A., Need Your Doctor be so Useless?, London, 1973, p. 437, quoted by Johnson-Laird, P.N., Wason, P.C. (eds.), Thinking, Readings in Cognitive Science, Cambridge, 1977.Google Scholar
Monod, Jacques, Le Hasard et la nécessité. Essai sur la philosophie naturelle de la biologie moderne, Paris, 1970, p. 67.Google Scholar
Montel, Paul, Encyclopédie française, tome I, L'outillage mental, Paris, 1937, p. 1.50–57.Google Scholar
Jean, D'Ormesson, “Vers un impérialisme de la science”, in Figaro littéraire, Feb. 19, 1968.Google Scholar
Popper, Karl R., The Logic of Scientific Discovery, 8th edition, London, 1975.Google Scholar
Spengler, Oswald, Der Untergang des Abendlandes, Munich, 1925, vol. I (Chap. “Theory as Myth”).Google Scholar
Carl, Schmitt, “Der Begriff des Politischen”, in Archiv fiir Sozialwissenschaft und Sozialpolitik, 58, Bd I, Hft, 1927, pp. 133.Google Scholar
Joseph, Sneed, “Describing revolutionary scientific change: a formal approach”, in Butts, R., Hintikka, J. (eds.), Historical and Philosophical Dimensions of Logic, Methodology and Philosophy of Science, Dordrecht, 1977.Google Scholar
Taton, René (ed.), Histoire générale des sciences, Tome II, Paris, 1958.Google Scholar
René, Thom, “Mathématique et théorisation scientifique”, in Penser les Mathématiques, Paris, 1982, pp. 253–73.Google Scholar
VITRUVII, De Architectura, Libri Decem, I.Google Scholar
Weil, André, apud Paul Lorenzen, Metamathematik, Mannheim, 1962, p. 132.Google Scholar
Von Weizsäcker, Carl Friedrich, Der Garten des Menschlichen, Beiträge zur geschichtlichen Anthropologie, Frankfurt am Main, 1980, pp. 4565.Google Scholar
Norbert, Wiener, apud Alexandru Giuculescu, “The Concepts of Cybernetics, an Historical Outline”, in Odobleja Between Ampère and Wiener, Bucharest, pp. 139204.Google Scholar