Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T01:53:22.378Z Has data issue: false hasContentIssue false

La logique interne de la théorie des probabilités

Published online by Cambridge University Press:  13 April 2010

Yvon Gauthier
Affiliation:
Université de Montréal

Extract

J'appelle empiriques ou a posteriori les probabilités déterminées par l'application de la théorie mathématique des probabilités à un domaine empirique, principalement la physique. La logique inductive ou la logique probabilitaire, les probabilités conditionnelles, etc. sont exclues de mon propos.

Type
Articles
Copyright
Copyright © Canadian Philosophical Association 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références bibliographiques

Gauthier, Yvon 1991 La logique interne (Mathesis). Paris, Vrin.Google Scholar
Gleason, A. M. 1957 «Measures on the Closed Subspaces of a Hilbert Space.» Journal of Mathematics and Mechanics, vol. 6, p. 885893.Google Scholar
Hilbert, D., von Neumann, J. et Nordheim, L. 1927 «Über die Grundlagen der Quantenmechanik.» Mathematische Annalen, vol. 98, p. 130.CrossRefGoogle Scholar
Jammer, M. 1966 The Conceptual Development of Quantum Mechanics. New York, McGraw-Hill.Google Scholar
Kochen, S. et Specker, E. 1967 «The Problem of Hidden Variables in Quantum Mechanics.» Journal of Mathematics and Mechanics, vol. 17, p. 5987.Google Scholar
Nelson, E. 1987 Radically Elementary Probability Theory. Princeton, NJ, Princeton University Press.CrossRefGoogle Scholar
Neumann, J. von 1932 Mathematische Grundlagen der Quantenmechanik. Berlin, Springer (New York, Dover, 1943).Google Scholar
Neumann, J. von 1962 Collected Works, vol. IV. New York, Macmillan.Google Scholar
Reichenbach, H. 1941 Philosophic Foundations of Quantum Mechanics. Berkeley, University of California Press.Google Scholar
Reichenbach, H. 1971 The Theory of Probability. Berkeley, University of California Press (trad. anglaise de Wahrscheinlichkeitslehre, Leyde, A. N. Sijthoff, 1935).Google Scholar
Weyl, H. 1968 Gesammelte Abhandlungen, vol. III, sous la dir. de K. Chandrasekharan. Berlin, Springer.Google Scholar