Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-12T19:45:18.246Z Has data issue: false hasContentIssue false

Within-person changes in basal cortisol and caregiving modulate executive attention across infancy

Published online by Cambridge University Press:  02 July 2021

Annie Brandes-Aitken*
Affiliation:
Department of Applied Psychology, New York University, New York, USA
Stephen Braren
Affiliation:
Department of Applied Psychology, New York University, New York, USA
Sarah C. Vogel
Affiliation:
Department of Applied Psychology, New York University, New York, USA
Rosemarie E. Perry
Affiliation:
Department of Applied Psychology, New York University, New York, USA
Natalie H. Brito
Affiliation:
Department of Applied Psychology, New York University, New York, USA
Clancy Blair
Affiliation:
Department of Applied Psychology, New York University, New York, USA
*
Author for Correspondence: Annie Brandes-Aitken, New York University, 627 Broadway, New York, New York 10012; E-mail: [email protected]

Abstract

One pathway by which environments of socioeconomic risk are thought to affect cognitive development is through stress physiology. The biological systems underpinning stress and attention undergo a sensitive period of development during infancy. Psychobiological theory emphasizes a dynamic pattern of context-dependent development, however, research has yet to examine how basal cortisol and attention dynamically covary across infancy in ecologically valid contexts. Thus, to address these gaps, we leveraged longitudinal, multilevel analytic methods to disentangle between- from within-person associations of hypothalamic–pituitary–adrenal (HPA) axis activity and executive attention behaviors across infancy. We use data from a large longitudinal sample (N = 1,292) of infants in predominantly low-income, nonurban communities at 7-, 15-, and 24-months of age. Using multilevel models, we investigated longitudinal associations of infant attention and basal cortisol levels and examined caregiving behaviors as moderators of this relationship. Results indicated a negative between- and within-person association between attention and cortisol across infancy and a within-person moderation by caregiver responsiveness. In other words, on the within-person level, higher levels of cortisol were concomitantly associated with lower infant attention across the first 2 years of life. However, variation in the caregiver's level of responsiveness either buffered or sensitized the executive attention system to the negative effects of physiological stress.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afifi, T. O., & Macmillan, H. L. (2011). Resilience following child maltreatment: A review of protective factors. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, 56, 266272. doi:10.1177/070674371105600505CrossRefGoogle ScholarPubMed
Amso, D., & Scerif, G. (2015). The attentive brain: Insights from developmental cognitive neuroscience. Nature Reviews Neuroscience, 16, 606619. doi:10.1038/nrn4025CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410422. doi:10.1038/nrn2648CrossRefGoogle ScholarPubMed
Bayley, N. (1969). Bayley scales of infant development. San Antonio, TX: The Psychological Corporation.Google Scholar
Bernier, A., Carlson, S. M., & Whipple, N. (2010). From external regulation to self-regulation: Early parenting precursors of young children's executive functioning. Child Development, 81, 326339. doi:10.1111/j.1467-8624.2009.01397.xCrossRefGoogle ScholarPubMed
Berry, D., & Willoughby, M. T. (2017). On the practical interpretability of cross-lagged panel models: Rethinking a developmental workhorse. Child Development, 88, 11861206. doi:10.1111/cdev.12660CrossRefGoogle ScholarPubMed
Blair, C. (2010). Stress and the development of self-regulation in context. Child Development Perspectives, 4, 181188. doi:10.1111/j.1750-8606.2010.00145.xCrossRefGoogle ScholarPubMed
Blair, C., Granger, D. A., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., … Fortunato, C. K. & the FLP Investigators (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 19701984. doi:10.1111/j.1467-8624.2011.01643.xCrossRefGoogle ScholarPubMed
Blair, C., & Raver, C. C. (2012a). Child development in the context of adversity: Experiential canalization of brain and behavior. The American Psychologist, 67, 309318. doi:10.1037/a0027493CrossRefGoogle Scholar
Blair, C., & Raver, C. C. (2012b). Individual development and evolution: Experiential canalization of self-regulation. Developmental Psychology, 48, 647657. doi:10.1037/a0026472CrossRefGoogle Scholar
Blair, C., & Raver, C. C. (2016). Poverty, stress, and brain development: New directions for prevention and intervention. Academic Pediatrics, 16, S30S36. doi:10.1016/j.acap.2016.01.010CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301. doi:10.1017/S0954579405050145CrossRefGoogle ScholarPubMed
Bradley, R. H. (1994). The home inventory: Review and reflections. Advances in Child Development and Behavior, 25, 241288. doi:10.1016/s0065-2407(08)60054-3CrossRefGoogle ScholarPubMed
Brandes-Aitken, A., Braren, S., Swingler, M., Voegtline, K., & Blair, C. (2019). Sustained attention in infancy: A foundation for the development of multiple aspects of self-regulation for children in poverty. Journal of Experimental Child Psychology, 184, 192209. doi:10.1016/J.JECP.2019.04.006CrossRefGoogle ScholarPubMed
Bronfenbrenner, U., & Morris, P. A. (2007). The bioecological model of human development. In Handbook of child psychology: Theoretical models of human development (Vol. 1, pp. 793). doi:10.1002/9780470147658.chpsy0114CrossRefGoogle Scholar
Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. The Future of Children/Center for the Future of Children, the David and Lucile Packard Foundation, 7, 5571.CrossRefGoogle ScholarPubMed
Burchinal, M. R., Roberts, J. E., Hooper, S., & Zeisel, S. A. (2000). Cumulative risk and early cognitive development: A comparison of statistical risk models. Developmental Psychology, 36, 793.CrossRefGoogle ScholarPubMed
Callaghan, B. L., & Tottenham, N. (2016a). The neuro-environmental loop of plasticity: A cross-species analysis of parental effects on emotion circuitry development following typical and adverse caregiving. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41, 163176. doi:10.1038/npp.2015.204CrossRefGoogle Scholar
Callaghan, B. L., & Tottenham, N. (2016b). The stress acceleration hypothesis: Effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 7, 7681. doi:10.1016/J.COBEHA.2015.11.018CrossRefGoogle Scholar
Casey, B. J., & Richards, J. E. (1988). Sustained visual attention in young infants measured with an adapted version of the visual preference paradigm. Child Development, 59, 1514. doi:10.2307/1130666CrossRefGoogle ScholarPubMed
Cerqueira, J. J., Mailliet, F., Almeida, O. F. X., Jay, T. M., & Sousa, N. (2007). The prefrontal cortex as a key target of the maladaptive response to stress. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 27812787. doi:10.1523/JNEUROSCI.4372-06.2007CrossRefGoogle ScholarPubMed
Clearfield, M. W., & Jedd, K. E. (2013). The effects of socio-economic status on infant attention. Infant and Child Development, 22, 5367. doi:10.1002/icd.1770CrossRefGoogle Scholar
Conger, R. D., & Elder, G. H. (1994). Families in troubled times: Adapting to change in rural America. Hawthorne, NY: Aldine de Gruyter.Google Scholar
Davies, P. T., Sturge-Apple, M. L., Cicchetti, D., & Cummings, E. M. (2007). The role of child adrenocortical functioning in pathways between interparental conflict and child maladjustment. Developmental Psychology, 43, 918930. doi:10.1037/0012-1649.43.4.918CrossRefGoogle ScholarPubMed
Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J. C. (2009). The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. Neuroimage, 47, 864871.CrossRefGoogle ScholarPubMed
de Kloet, E. R., Oitzl, M. S., & Joëls, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422426. doi:10.1016/s0166-2236(99)01438-1CrossRefGoogle ScholarPubMed
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience and Biobehavioral Reviews, 35, 15621592. doi:10.1016/j.neubiorev.2010.11.007CrossRefGoogle ScholarPubMed
Dill, B. T. (1999). Poverty in the rural U.S.: Implications for children, families, and communities. Annie E. Casey Foundation. Retrieved from http://www.aecf.org/KnowledgeCenter.aspx.Google Scholar
DuMont, K. A., Widom, C. S., & Czaja, S. J. (2007). Predictors of resilience in abused and neglected children grown-up: The role of individual and neighborhood characteristics. Child Abuse & Neglect, 31, 255274. doi:10.1016/j.chiabu.2005.11.015CrossRefGoogle ScholarPubMed
Ellis, B. J., Bianchi, J., Griskevicius, V., & Frankenhuis, W. E. (2017). Beyond risk and protective factors: An adaptation-based approach to resilience. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 12, 561587. doi:10.1177/1745691617693054CrossRefGoogle ScholarPubMed
Ellis, B. J., & Del Giudice, M. (2019). Developmental adaptation to stress: An evolutionary perspective. Annual Review of Psychology, 70, 111139. doi:10.1146/annurev-psych-122216-011732CrossRefGoogle Scholar
Erickson, K., Drevets, W., & Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience and Biobehavioral Reviews, 27, 233246. doi:10.1016/s0149-7634(03)00033-2CrossRefGoogle ScholarPubMed
Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59, 77.CrossRefGoogle ScholarPubMed
Feldman, R. (2007). Parent-Infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. Journal of Child Psychology and Psychiatry, 48, 329354. doi:10.1111/j.1469-7610.2006.01701.xCrossRefGoogle ScholarPubMed
Finegood, E. D., Wyman, C., O'Connor, T. G., Blair, C. B., & The Family Life Project Investigators (2017). Salivary cortisol and cognitive development in infants from low-income communities. Stress, 20, 112121. doi:10.1080/10253890.2017.1286325CrossRefGoogle ScholarPubMed
Frankenhuis, W. E., & Del Giudice, M. (2012). When do adaptive developmental mechanisms yield maladaptive outcomes? Developmental Psychology, 48, 628642. doi:10.1037/a0025629CrossRefGoogle ScholarPubMed
Frankenhuis, W. E., Panchanathan, K., & Nettle, D. (2016). Cognition in harsh and unpredictable environments. Current Opinion in Psychology, 7, 7680. doi:10.1016/j.copsyc.2015.08.011CrossRefGoogle Scholar
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., & Telzer, E. H. (2013). Early developmental emergence of human amygdala – prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences of the United States of America, 110, 1563815643. doi:10.1073/pnas.1307893110/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1307893110CrossRefGoogle ScholarPubMed
Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27, 413. doi:10.1037/0012-1649.27.1.4CrossRefGoogle Scholar
Gottlieb, G. (1997). Synthesizing Nature-nurture: Prenatal Roots of Instinctive Behavior. Psychology Press.Google Scholar
Gottlieb, G. (1998). Normally occurring environmental and behavioral influences on gene activity: From central dogma to probabilistic epigenesis. Psychological Review, 105, 792802.CrossRefGoogle Scholar
Granger, D. A., Blair, C., Willoughby, M., Kivlighan, K. T., Hibel, L. C., Fortunato, C. K., & Wiegand, L. E. (2007). Individual differences in salivary cortisol and alpha-amylase in mothers and their infants: Relation to tobacco smoke exposure. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 49, 692701.CrossRefGoogle ScholarPubMed
Grossmann, T. (2013). Mapping prefrontal cortex functions in human infancy. Infancy: The Official Journal of the International Society on Infant Studies, 18, 303324. doi:10.1111/infa.12016CrossRefGoogle Scholar
Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220. doi:10.1016/s0306-4530(01)00045-2CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173. doi:10.1146/annurev.psych.58.110405.085605CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Quevedo, K. M. (2008). Early care experiences and HPA axis regulation in children: A mechanism for later trauma vulnerability. Progress in Brain Research, 167, 137149. doi:10.1016/S0079-6123(07)67010-1CrossRefGoogle ScholarPubMed
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13, 6573. doi:10.1016/J.TICS.2008.11.003CrossRefGoogle ScholarPubMed
Harmon, A. G., Hibel, L. C., Rumyantseva, O., & Granger, D. A. (2007). Measuring salivary cortisol in studies of child development: Watch out—what goes in may not come out of saliva collection devices. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 49, 495500.CrossRefGoogle Scholar
Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews. Neuroscience, 6, 877888. doi:10.1038/nrn1787CrossRefGoogle ScholarPubMed
Herman, J. P., & Tasker, J. G. (2016). Paraventricular hypothalamic mechanisms of chronic stress adaptation. Frontiers in Endocrinology, 7, 137.CrossRefGoogle ScholarPubMed
Hodel, A. S. (2018). Rapid infant prefrontal cortex development and sensitivity to early environmental experience. Developmental Review, 48, 113144. doi:10.1016/J.DR.2018.02.003CrossRefGoogle ScholarPubMed
Hoffman, L., & Stawski, R. S. (2009). Persons as contexts: Evaluating between-person and within-person effects in longitudinal analysis. Research in Human Development, 6, 97120. doi:10.1080/15427600902911189CrossRefGoogle Scholar
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256282. doi:10.1037/a0032671CrossRefGoogle ScholarPubMed
Isaksson, J., Nilsson, K. W., & Lindblad, F. (2013). Early psychosocial adversity and cortisol levels in children with attention-deficit/hyperactivity disorder. European Child & Adolescent Psychiatry, 22, 425432. doi:10.1007/s00787-013-0383-0CrossRefGoogle ScholarPubMed
Lipina, S. J., Martelli, M. I., Vuelta, B., & Colombo, J. A. (2005). Performance on the A-not-B task of Argentinean infants from unsatisfied and satisfied basic needs homes. Revista Interamericana de Psicología/Interamerican Journal of Psychology, 39(1), 4960.Google Scholar
Lipina, S. J., & Posner, M. I. (2012). The impact of poverty on the development of brain networks. Frontiers in Human Neuroscience, 6, 238. doi:10.3389/fnhum.2012.00238CrossRefGoogle ScholarPubMed
Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences of the United States of America, 106, 912917. doi:10.1073/pnas.0807041106CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344. doi:10.1111/j.1749-6632.1998.tb09546.xCrossRefGoogle ScholarPubMed
McEwen, B. S. (2006). Protective and damaging effects of stress mediators: Central role of the brain. Dialogues in Clinical Neuroscience, 8, 367381. doi:10.31887/DCNS.2006.8.4/bmcewenCrossRefGoogle ScholarPubMed
McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62, 431445. doi:10.1146/annurev-med-052209-100430CrossRefGoogle ScholarPubMed
Morales, S., Fu, X., & Pérez-Edgar, K. E. (2016). A developmental neuroscience perspective on affect-biased attention. Developmental Cognitive Neuroscience, 21, 2641. doi:10.1016/J.DCN.2016.08.001CrossRefGoogle ScholarPubMed
Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Development, 67, 508522.CrossRefGoogle ScholarPubMed
Perry, R. E., Blair, C., & Sullivan, R. M. (2017). Neurobiology of infant attachment: Attachment despite adversity and parental programming of emotionality. Current Opinion in Psychology, 17, 16. doi:10.1016/j.copsyc.2017.04.022CrossRefGoogle ScholarPubMed
Perry, R. E., Finegood, E. D., Braren, S. H., & Blair, C. (2018). The social neuroendocrinology and development of executive functions. In Schultheiss, O. C., & Mehta, P. H. (Eds.), Routledge International Handbook of Social Neuroendocrinology (pp. 530543). London: Routledge. doi:10.4324/9781315200439-30CrossRefGoogle Scholar
Perry, R. E., Rincón-Cortés, M., Braren, S. H., Brandes-Aitken, A. N., Opendak, M., Pollonini, G., … Sullivan, R. M. (2019). Corticosterone administration targeting a hypo-reactive HPA axis rescues a socially-avoidant phenotype in scarcity-adversity reared rats. Developmental Cognitive Neuroscience, 40, 100716. doi:10.1016/j.dcn.2019.100716CrossRefGoogle ScholarPubMed
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389. doi:10.1146/annurev-neuro-062111-150525CrossRefGoogle ScholarPubMed
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi:10.1146/annurev.ne.13.030190.000325CrossRefGoogle ScholarPubMed
Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 128. doi:10.1146/annurev.psych.58.110405.085516CrossRefGoogle ScholarPubMed
Pruessner, J. C., Dedovic, K., Pruessner, M., Lord, C., Buss, C., Collins, L., … Lupien, S. J. (2010). Stress regulation in the central nervous system: Evidence from structural and functional neuroimaging studies in human populations-2008 Curt Richter award winner. Psychoneuroendocrinology, 35, 179191.CrossRefGoogle ScholarPubMed
R Core Team (2013). R: A language and environment for statistical computing.Google Scholar
Roos, L. E., Giuliano, R. J., Beauchamp, K. G., Berkman, E. T., Knight, E. L., & Fisher, P. A. (2019). Acute stress impairs children's sustained attention with increased vulnerability for children of mothers reporting higher parenting stress. Developmental Psychobiology, doi:10.1002/dev.21915Google ScholarPubMed
Rosen, M. L., Amso, D., & McLaughlin, K. A. (2019). The role of the visual association cortex in scaffolding prefrontal cortex development: A novel mechanism linking socioeconomic status and executive function. Developmental Cognitive Neuroscience, 39, 100699. doi:10.1016/j.dcn.2019.100699CrossRefGoogle ScholarPubMed
Rosen, M. L., Hagen, M. P., Lurie, L. A., Miles, Z. E., Sheridan, M. A., Meltzoff, A. N., & McLaughlin, K. A. (2019). Cognitive stimulation as a mechanism linking socioeconomic status with executive function: A longitudinal investigation. Child Development, 91, e762e779. doi:10.1111/cdev.13315Google ScholarPubMed
Rothbart, M. K., & Rueda, M. R. (2005). The Development of Effortful Control. In U. Mayr, E. Awh, & S. W. Keele (Eds.), Decade of behavior. Developing individuality in the human brain: A tribute to Michael I. Posner (pp. 167–188). American Psychological Association. doi:10.1037/11108-009CrossRefGoogle Scholar
Rothbart, M. K., Sheese, B. E., Rueda, M. R., & Posner, M. I. (2011). Developing mechanisms of self-regulation in early life. Emotion Review: Journal of the International Society for Research on Emotion, 3, 207213. doi:10.1177/1754073910387943CrossRefGoogle ScholarPubMed
Ruff, H. A. (1986). Components of attention during infants ‘manipulative exploration. Child Development, 57, 105114.CrossRefGoogle ScholarPubMed
Ruff, H. A., & Capozzoli, M. C. (2003). Development of attention and distractibility in the first 4 years of life. Developmental Psychology, 39, 877890. doi:10.1037/0012-1649.39.5.877CrossRefGoogle ScholarPubMed
Smith, L. B., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7, 343348. doi:10.1016/s1364-6613(03)00156-6CrossRefGoogle ScholarPubMed
Stifter, C. A., & Corey, J. M. (2001). Vagal regulation and observed social behavior in infancy. Social Development, 10, 189201.CrossRefGoogle Scholar
Straus, M. A., Hamby, S. L., Boney-McCoy, S. U. E., & Sugarman, D. B. (1996). The revised conflict tactics scales (CTS2): Development and preliminary psychometric data. Journal of Family Issues, 17, 283316. doi:10.1177/019251396017003001CrossRefGoogle Scholar
Sullivan, R. M., & Gratton, A. (2002). Prefrontal cortical regulation of hypothalamic–pituitary–adrenal function in the rat and implications for psychopathology: Side matters. Psychoneuroendocrinology, 27, 99114.CrossRefGoogle ScholarPubMed
Sullivan, E. L., Holton, K. F., Nousen, E. K., Barling, A. N., Sullivan, C. A., Propper, C. B., & Nigg, J. T. (2015). Early identification of ADHD risk via infant temperament and emotion regulation: A pilot study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 56, 949957. doi:10.1111/jcpp.12426CrossRefGoogle ScholarPubMed
Suor, J. H., Sturge-Apple, M. L., Davies, P. T., Cicchetti, D., & Manning, L. G. (2015). Tracing differential pathways of risk: Associations Among family adversity, cortisol, and cognitive functioning in childhood. Child Development, 86, 11421158. doi:10.1111/cdev.12376CrossRefGoogle ScholarPubMed
Swingler, M. M., Perry, N. B., & Calkins, S. D. (2015). Neural plasticity and the development of attention: Intrinsic and extrinsic influences. Development and Psychopathology, 27, 443457. doi:10.1017/S0954579415000085CrossRefGoogle ScholarPubMed
Troller-Renfree, S., McDermott, J. M., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2015). The effects of early foster care intervention on attention biases in previously institutionalized children in Romania. Developmental Science, 18, 713722. doi:10.1111/desc.12261CrossRefGoogle ScholarPubMed
VanTieghem, M. R., & Tottenham, N. (2018). Neurobiological programming of early life stress: Functional development of amygdala-prefrontal circuitry and vulnerability for stress-related psychopathology. Current Topics in Behavioral Neurosciences, 38, 117136. doi:10.1007/7854_2016_42CrossRefGoogle ScholarPubMed
Vernon-Feagans, L., & Cox, M. (2013). I. Poverty, rurality, parenting, and risk: An introduction. Monographs of the Society for Research in Child Development, 78, 123. doi:10.1111/mono.v78.5CrossRefGoogle Scholar
Voelkle, M. C., Brose, A., Schmiedek, F., & Lindenberger, U. (2014). Toward a unified framework for the study of between-person and within-person structures: Building a bridge between two research paradigms. Multivariate Behavioral Research, 49, 193213. doi:10.1080/00273171.2014.889593CrossRefGoogle Scholar
Vygotsky, L. S. (1979). The development of higher forms of attention in childhood. Soviet Psychology, 18, 67115. doi:10.2753/RPO1061-0405180167CrossRefGoogle Scholar
Wass, S. V., Clackson, K., Georgieva, S. D., Brightman, L., Nutbrown, R., Leong, V., & Wass, S. (2018). Infants’ visual sustained attention is higher during joint play than solo play: Is this due to increased endogenous attention control or exogenous stimulus capture? Developmental Science, 21, e12667. doi:10.1111/desc.12667CrossRefGoogle ScholarPubMed
Wass, S. V., Cook, C., & Clackson, K. (2017). Changes in behavior and salivary cortisol after targeted cognitive training in typical 12-month-old infants. Developmental Psychology, 53, 815825. doi:10.1037/dev0000266CrossRefGoogle ScholarPubMed
Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory – Is younger, better?. Developmental Review, 32, 360387.CrossRefGoogle Scholar
Wass, S., Smith, C., Stubbs, L., Clackson, K., & Mirza, F. (2019). Physiological stress, sustained attention and cognitive engagement in 12-month-old infants from urban environments. Unpublished Manuscript. School of Psychology, University of East London. Retrieved from doi:10.31234/osf.io/7nv34CrossRefGoogle Scholar
Werchan, D. M., & Amso, D. (2017). A novel ecological account of prefrontal cortex functional development. Psychological Review, 124, 720. doi:10.1037/rev0000078CrossRefGoogle ScholarPubMed
Yu, C., & Smith, L. B. (2016). The social origins of sustained attention in one-year-old human infants. Current Biology, 26, 12351240. doi:10.1016/j.cub.2016.03.026CrossRefGoogle ScholarPubMed