Hostname: page-component-5f745c7db-sbzbt Total loading time: 0 Render date: 2025-01-06T07:47:22.298Z Has data issue: true hasContentIssue false

A systematic review of caregiver–child physiological synchrony across systems: Associations with behavior and child functioning

Published online by Cambridge University Press:  11 January 2021

Carrie E. DePasquale*
Affiliation:
Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
*
Author for Correspondence: Institute of Child Development, University of Minnesota – Twin Cities, 51 E. River Road, Minneapolis, MN55455; E-mail: [email protected]

Abstract

Extensive research has established a positive association between caregiver-child behavioral synchrony and child developmental functioning. Burgeoning research examining physiological synchrony has yet to elucidate its impact for children’s developing self-regulation. The objectives of this systematic review were to: 1) determine whether there is evidence that caregiver-child physiological synchrony promotes positive child development, 2) examine developmental differences in physiological synchrony and its correlates, and 3) explore whether context, risk, and/or stress influence patterns of synchrony. Sixty-nine studies met the following criteria on PubMed and PsycINFO: 1) peer-reviewed empirical articles in English that 2) examine autonomic, hypothalamic-pituitary-adrenocortical, and/or central nervous system activity 3) for caregivers and children 4) in response to a task and 5) directly examine the association between caregiver and child physiology. Findings varied based on developmental period and current behavioral context. Functional differences may exist across physiological systems and contexts. Synchrony may have different developmental consequences for dyads with and without certain risk factors. Few studies examine physiological synchrony across multiple systems or contexts, nor do they measure child characteristics associated with synchrony. Statistical and methodological challenges impede interpretation. Findings generally support the idea that physiological synchrony may support children’s developing self-regulation. Longitudinal research is needed to examine child developmental outcomes over time.

Type
Special Section 2: Early Adversity and Development: Contributions from the Field
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amole, M. C., Cyranowski, J. M., Wright, A. G., & Swartz, H. A. (2017). Depression impacts the physiological responsiveness of mother–daughter dyads during social interaction. Depression and Anxiety, 34, 118126. doi:10.1002/da.22595CrossRefGoogle ScholarPubMed
Applehans, B. M., & Luecken, L. J. (2006). Attentional processes, anxiety, and the regulation of cortisol reactivity. Anxiety, Stress, & Coping, 19, 8192. doi:10.1080/10615800600565724CrossRefGoogle Scholar
Atkinson, L., Gonzalez, A., Kashy, D. A., Santo Basile, V., Masellis, M., Pereira, J., … Levitan, R. (2013). Maternal sensitivity and infant and mother adrenocortical function across challenges. Psychoneuroendocrinology, 38, 29432951. doi:10.1016/j.psyneuen.2013.08.001CrossRefGoogle ScholarPubMed
Atzil, S., Hendler, T., & Feldman, R. (2013). The brain basis of social synchrony. Social Cognitive and Affective Neuroscience, 9, 11931202. doi:10.1093/scan/nst105CrossRefGoogle ScholarPubMed
Baker, J. K., Fenning, R. M., Howland, M. A., Baucom, B. R., Moffitt, J., & Erath, S. A. (2015). Brief report: A pilot study of parent–child biobehavioral synchrony in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 45, 41404146. doi:10.1007/s10803-015-2528-0CrossRefGoogle ScholarPubMed
Bernard, N. K., Kashy, D. A., Levendosky, A. A., Bogat, G. A., & Lonstein, J. S. (2017). Do different data analytic approaches generate discrepant findings when measuring mother–infant HPA axis attunement? Developmental Psychobiology, 59, 174184. doi:10.1002/dev.21474CrossRefGoogle ScholarPubMed
Bernier, A., Beauchamp, M. H., Carlson, S. M., & Lalonde, G. (2015). A secure base from which to regulate: Attachment security in toddlerhood as a predictor of executive functioning at school entry. Developmental Psychology, 51, 11771189. doi:10.1037/dev0000032CrossRefGoogle ScholarPubMed
Blair, C., & Raver, C. C. (2012). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67, 309318. doi:10.1037/a0027493CrossRefGoogle ScholarPubMed
Borelli, J. L., Shai, D., Smiley, P. A., Boparai, S., Goldstein, A., Rasmussen, H. F., & Granger, D. A. (2019). Mother–child adrenocortical synchrony: Roles of maternal overcontrol and child developmental phase. Developmental Psychobiology, 61, 11201134. doi: 10.1002/dev.21845CrossRefGoogle ScholarPubMed
Bornstein, M. H., & Suess, P. E. (2000). Child and mother cardiac vagal tone: Continuity, stability, and concordance across the first 5 years. Developmental Psychology, 36, 5465. doi:10.1037//0012-1649.36.1.54CrossRefGoogle ScholarPubMed
Brown, M. R., Fisher, L. A., Webb, V., Vale, W. W., & Rivier, J. E. (1985). Corticotropin-releasing factor: A physiologic regulator of adrenal epinephrine secretion. Brain Research, 328, 355357.CrossRefGoogle ScholarPubMed
Calkins, S. D. (2007). The emergence of self-regulation: Biological and behavioral control mechanisms supporting toddler competencies. In C. A., Brownell, & C. B., Kopp (Eds.), Socioemotional Development in the Toddler Years: Transitions and Transformations (pp. 261284). The Guilford Press.Google Scholar
Castral, T. C., Warnock, F., Dos Santos, C. B., Daré, M. F., Moreira, A. C., Antonini, S. R. R., & Scochi, C. G. S. (2015). Maternal mood and concordant maternal and infant salivary cortisol during heel lance while in kangaroo care. European Journal of Pain, 19, 429438. doi:10.1002/ejp.566CrossRefGoogle ScholarPubMed
Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259284. doi:10.1146/annurev.physiol.67.040403. 120816.CrossRefGoogle ScholarPubMed
Clauss, N. J., Byrd-Craven, J., Kennison, S. M., & Chua, K. J. (2018). The roles of mothers’ partner satisfaction and mother-infant communication duration in mother-infant adrenocortical attunement. Adaptive Human Behavior and Physiology, 4, 91107. doi:10.1007/s40750-017-0078-8CrossRefGoogle Scholar
Creaven, A. M., Skowron, E. A., Hughes, B. M., Howard, S., & Loken, E. (2014). Dyadic concordance in mother and preschooler resting cardiovascular function varies by risk status. Developmental Psychobiology, 56, 142152. doi:10.1002/dev.21098CrossRefGoogle ScholarPubMed
Creavy, K. L., Gatzke-Kopp, L. M., Zhang, X., Fishbein, D., & Kiser, L. J. (2020). When you go low, I go high: Negative coordination of physiological synchrony among parents and children. Developmental Psychobiology, 62, 310323. doi:10.1002/dev.21905CrossRefGoogle ScholarPubMed
Crockett, E., Holmes, B., Granger, D., & Lyons-Ruth, K. (2013). Maternal disrupted communication during face-to-face interaction at 4 months: Relation to maternal and infant cortisol among at-risk families. Infancy, 18, 11111134. doi:10.1111/infa.12015CrossRefGoogle ScholarPubMed
Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82, 879894. doi:10.1037/a0035297CrossRefGoogle ScholarPubMed
Danyluck, C., & Page-Gould, E. (2018). Intergroup dissimilarity predicts physiological synchrony and affiliation in intergroup interaction. Journal of Experimental Social Psychology, 74, 111120. doi:10.1016/j.jesp.2017.08.001CrossRefGoogle Scholar
Davis, M., West, K., Bilms, J., Morelen, D., & Suveg, C. (2018). A systematic review of parent–child synchrony: It is more than skin deep. Developmental Psychobiology, 60, 674691. doi:10.1002/dev.21743CrossRefGoogle ScholarPubMed
de Kloet, E. R., Karst, H., & Joëls, M. (2008). Corticosteroid hormones in the central stress response: Quick-and-slow. Frontiers in Neuroendocrinology, 29, 268272. doi:10.1016/j.yfrne.2007.10.002CrossRefGoogle ScholarPubMed
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592. doi:10.1016/j.neubiorev.2010.11.007CrossRefGoogle ScholarPubMed
DePasquale, C. E., Raby, K. L., Hoye, J., & Dozier, M. (2018). Parenting predicts Strange Situation cortisol reactivity among children adopted internationally. Psychoneuroendocrinology, 89, 8691. doi:10.1016/j.psyneuen.2018.01.003CrossRefGoogle ScholarPubMed
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391. doi:10.1037/0033-2909.130.3.355CrossRefGoogle ScholarPubMed
Doom, J. R., Hostinar, C. E., VanZomeren-Dohm, A. A., & Gunnar, M. R. (2015). The roles of puberty and age in explaining the diminished effectiveness of parental buffering of HPA reactivity and recovery in adolescence. Psychoneuroendocrinology, 59, 102111. doi:10.1016/j.psyneuen.2015.04.024CrossRefGoogle ScholarPubMed
Dougherty, L. R., Klein, D. N., Rose, S., & Laptook, R. S. (2011). Hypothalamic-pituitary-adrenal axis reactivity in the preschool-age offspring of depressed parents: Moderation by early parenting. Psychological Science, 22, 650658. doi:10.1177/0956797611404084CrossRefGoogle ScholarPubMed
Ebisch, S. J., Aureli, T., Bafunno, D., Cardone, D., Romani, G. L., & Merla, A. (2012). Mother and child in synchrony: Thermal facial imprints of autonomic contagion. Biological Psychology, 89, 123129. doi:10.1016/j.biopsycho.2011.09.018CrossRefGoogle ScholarPubMed
Engert, V., Vogel, S., Efanov, S. I., Duchesne, A., Corbo, V., Ali, N., & Pruessner, J. C. (2011). Investigation into the cross-correlation of salivary cortisol and alpha-amylase responses to psychological stress. Psychoneuroendocrinology, 36, 12941302. doi:10.1016/j.psyneuen.2011.02.018CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 8593. doi:10.1016/j.tics.2010.11.004CrossRefGoogle ScholarPubMed
Feldman, R., Magori-Cohen, R., Galili, G., Singer, M., & Louzoun, Y. (2011). Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behavior and Development, 34, 569577. doi:10.1016/j.infbeh.2011.06.008CrossRefGoogle ScholarPubMed
Finegood, E. D., Blair, C., Granger, D. A., Hibel, L. C., Mills-Koonce, R., & Family Life Project Key Investigators. (2016). Psychobiological influences on maternal sensitivity in the context of adversity. Developmental Psychology, 52, 10731087. doi:10.1037/dev0000123CrossRefGoogle ScholarPubMed
Finsterwald, C., & Alberini, C. M. (2014). Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies. Neurobiology of Learning and Memory, 112, 1729. doi:10.1016/j.nlm.2013.09.017CrossRefGoogle ScholarPubMed
Fox, N. A., & Calkins, S. D. (2003). The development of self-control of emotion: Intrinsic and extrinsic influences. Motivation and Emotion, 27, 726.CrossRefGoogle Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016. doi:10.1016/ j.psyneuen.2005.04.006CrossRefGoogle ScholarPubMed
Gates, K. M., Gatzke-Kopp, L. M., Sandsten, M., & Blandon, A. Y. (2015). Estimating time-varying RSA to examine psychophysiological linkage of marital dyads. Psychophysiology, 52, 10591065. doi:10.1111/psyp.12428CrossRefGoogle ScholarPubMed
Ghafar-Tabrizi, R. (2008). Reversal theory and physiological linkage in the low-conflict and high-conflict mother-daughter dyadic interactions. Contemporary Psychology, 3, 6275.Google Scholar
Gordis, E. B., Margolin, G., Spies, L. A., Susman, E. J., & Granger, D. A. (2010). Interparental aggression and parent–adolescent salivary alpha amylase symmetry. Physiology & Behavior, 100, 225233. doi:10.1016/j.physbeh.2010.01.006CrossRefGoogle ScholarPubMed
Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010). Oxytocin, cortisol, and triadic family interactions. Physiology & Behavior, 101, 679684. doi:10.1016/j.physbeh.2010.08.008CrossRefGoogle ScholarPubMed
Gray, S. A., Lipschutz, R. S., & Scheeringa, M. S. (2018). Young children's physiological reactivity during memory recall: Associations with posttraumatic stress and parent physiological synchrony. Journal of Abnormal Child Psychology, 46, 871880. doi:10.1007/s1080CrossRefGoogle ScholarPubMed
Gunnar, M. R., Brodersen, L., Nachmias, M., Buss, K., & Rigatuso, J. (1996). Stress reactivity and attachment security. Developmental Psychobiology, 29, 191204.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic–pituitary–adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10, 479488. doi:10.1080/17470919.2015.1070747CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173. doi:10.1146/annurev.psych.58.110405.085605CrossRefGoogle ScholarPubMed
Gunnar, M. R., Talge, N. M., & Herrera, A. (2009a). Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology, 34, 953967. doi:10.1016/j.psyneuen.2009.02.010CrossRefGoogle Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009b). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985. doi:10.1017/S0954579409000054CrossRefGoogle Scholar
Halevi, G., Djalovski, A., Kanat-Maymon, Y., Yirmiya, K., Zagoory-Sharon, O., Koren, L., & Feldman, R. (2017). The social transmission of risk: Maternal stress physiology, synchronous parenting, and well-being mediate the effects of war exposure on child psychopathology. Journal of Abnormal Psychology, 126, 10871103. doi:10.1037/abn0000307CrossRefGoogle ScholarPubMed
Ham, J., & Tronick, E. (2009). Relational psychophysiology: Lessons from mother–infant physiology research on dyadically expanded states of consciousness. Psychotherapy Research, 19, 619632. doi:10.1080/10503300802609672CrossRefGoogle ScholarPubMed
Han, Z. R., Gao, M. M., Yan, J., Hu, X., Zhou, W., & Li, X. (2019). Correlates of parent-child physiological synchrony and emotional parenting: Differential associations in varying interactive contexts. Journal of Child and Family Studies, 28, 11161123. doi:10.1007/s10826-019-01337-4CrossRefGoogle Scholar
Hänsel, A., & von Känel, R. (2008). The ventro-medial prefrontal cortex: A major link between the autonomic nervous system, regulation of emotion, and stress reactivity? BioPsychoSocial Medicine, 2, 15. doi:10.1186/1751-0759-2-21CrossRefGoogle Scholar
Hastings, P. D., Nuselovici, J. N., Utendale, W. T., Coutya, J., McShane, K. E., & Sullivan, C. (2008). Applying the polyvagal theory to children's emotion regulation: Social context, socialization, and adjustment. Biological Psychology, 79, 299306. doi:10.1016/j.biopsycho.2008.07.005CrossRefGoogle Scholar
Helm, J. L., Miller, J. G., Kahle, S., Troxel, N. R., & Hastings, P. D. (2018). On measuring and modeling physiological synchrony in dyads. Multivariate Behavioral Research, 53, 521543. doi:10.1080/00273171.2018.1459292.CrossRefGoogle Scholar
Hendrix, C. L., Stowe, Z. N., Newport, D. J., & Brennan, P. A. (2018). Physiological attunement in mother–infant dyads at clinical high risk: The influence of maternal depression and positive parenting. Development and Psychopathology, 30, 623634. doi:10.1017/S0954579417001158CrossRefGoogle ScholarPubMed
Hibel, L. C., Granger, D. A., Blair, C., & Cox, M. J. (2009). Intimate partner violence moderates the association between mother–infant adrenocortical activity across an emotional challenge. Journal of Family Psychology, 23, 615625. doi:10.1037/a0016323CrossRefGoogle ScholarPubMed
Hibel, L. C., Granger, D. A., Blair, C., Finegood, E. D., & Family Life Project Key Investigators. (2015). Maternal-child adrenocortical attunement in early childhood: Continuity and change. Developmental Psychobiology, 57, 8395. doi:10.1002/dev.21266CrossRefGoogle ScholarPubMed
Hibel, L. C., & Mercado, E. (2019). Marital conflict predicts mother-to-infant adrenocortical transmission. Child Development, 90, e80e95. doi:10.1111/cdev.13010CrossRefGoogle ScholarPubMed
Hibel, L. C., Mercado, E., & Valentino, K. (2019). Child maltreatment and mother-child transmission of stress physiology. Child Maltreatment, 24, 340352. doi:10.1177/1077559519826295CrossRefGoogle ScholarPubMed
Hinnant, J. B., Erath, S. A., & El-Sheikh, M. (2015). Harsh parenting, parasympathetic activity, and development of delinquency and substance use. Journal of Abnormal Psychology, 124, 137151. doi:10.1037/abn0000026CrossRefGoogle ScholarPubMed
Hove, M. J., & Risen, J. L. (2009). It's all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27, 949960.CrossRefGoogle Scholar
Hu, Y., Hu, Y., Li, X., Pan, Y., & Cheng, X. (2017). Brain-to-brain synchronization across two persons predicts mutual prosociality. Social Cognitive and Affective Neuroscience, 12, 18351844. doi:10.1093/scan/nsx118CrossRefGoogle ScholarPubMed
Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10, 459466. doi:10.1038/nrn2632CrossRefGoogle ScholarPubMed
Kalomiris, A. E., & Kiel, E. J. (2018). Mother–toddler cortisol synchrony moderates risk of early internalizing symptoms. Infancy, 23, 232251. doi:10.1111/infa.12216CrossRefGoogle ScholarPubMed
Kennedy, A. E., Rubin, K. H., Hastings, P., & Maisel, B. (2004). Longitudinal relations between child vagal tone and parenting behavior: 2 to 4 years. Developmental Psychobiology, 45, 1021. doi:10.1002/dev.20013CrossRefGoogle ScholarPubMed
Khoury, J. E., Gonzalez, A., Levitan, R., Masellis, M., Basile, V., & Atkinson, L. (2016). Maternal self-reported depressive symptoms and maternal cortisol levels interact to predict infant cortisol levels. Infant Mental Health Journal, 37, 125139. doi:10.1002/imhj.21554CrossRefGoogle ScholarPubMed
Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19, 313333.CrossRefGoogle ScholarPubMed
Laurent, H. K., Ablow, J. C., & Measelle, J. (2011). Risky shifts: How the timing and course of mothers’ depressive symptoms across the perinatal period shape their own and infant's stress response profiles. Development and Psychopathology, 23, 521538. doi:10.1017/S0954579411000083CrossRefGoogle ScholarPubMed
Laurent, H. K., Ablow, J. C., & Measelle, J. (2012). Taking stress response out of the box: Stability, discontinuity, and temperament effects on HPA and SNS across social stressors in mother–infant dyads. Developmental Psychology, 48, 3545. doi:10.1037/a0025518CrossRefGoogle ScholarPubMed
Lee, T. H., Qu, Y., & Telzer, E. H. (2018). Dyadic neural similarity during stress in mother–child dyads. Journal of Research on Adolescence, 28, 121133. doi:10.1111/jora.12334CrossRefGoogle ScholarPubMed
Levy, J., Goldstein, A., & Feldman, R. (2017). Perception of social synchrony induces mother–child gamma coupling in the social brain. Social Cognitive and Affective Neuroscience, 12, 10361046. doi:10.1093/scan/nsx032CrossRefGoogle ScholarPubMed
Lougheed, J., & Hollenstein, T. (2018). Arousal transmission and attenuation in mother–daughter dyads during adolescence. Social Development, 27, 1933. doi:10.1111/sode.12250CrossRefGoogle Scholar
Luecken, L. J., Crnic, K. A., Gonzales, N. A., Winstone, L. K., & Somers, J. A. (2019). Mother-infant dyadic dysregulation and postpartum depressive symptoms in low-income Mexican-origin women. Biological Psychology, 147, 107614. doi: 10.1016/j.biopsycho.2018.10.016.CrossRefGoogle ScholarPubMed
Luijk, M. P., Saridjan, N., Tharner, A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jaddoe, V. W., … Tiemeier, H. (2010). Attachment, depression, and cortisol: Deviant patterns in insecure-resistant and disorganized infants. Developmental Psychobiology, 52, 441452.CrossRefGoogle ScholarPubMed
Lunkenheimer, E., Busuito, A., Brown, K. M., Panlilio, C., & Skowron, E. A. (2019). The interpersonal neurobiology of child maltreatment: Parasympathetic substrates of interactive repair in maltreating and nonmaltreating mother–child dyads. Child Maltreatment, 24, 353363. doi: 10.1177/1077559518824058CrossRefGoogle ScholarPubMed
Lunkenheimer, E., Busuito, A., Brown, K. M., & Skowron, E. A. (2018a). Mother–child coregulation of parasympathetic processes differs by child maltreatment severity and subtype. Child Maltreatment, 23, 211220. doi:10.1177/1077559517751672CrossRefGoogle Scholar
Lunkenheimer, E., Tiberio, S. S., Buss, K. A., Lucas-Thompson, R. G., Boker, S. M., & Timpe, Z. C. (2015). Coregulation of respiratory sinus arrhythmia between parents and preschoolers: Differences by children's externalizing problems. Developmental Psychobiology, 57, 9941003. doi:10.1002/dev.21323CrossRefGoogle ScholarPubMed
Lunkenheimer, E., Tiberio, S. S., Skoranski, A. M., Buss, K. A., & Cole, P. M. (2018b). Parent-child coregulation of parasympathetic processes varies by social context and risk for psychopathology. Psychophysiology, 55, e12985. doi:10.1111/psyp.12985CrossRefGoogle Scholar
Manini, B., Cardone, D., Ebisch, S., Bafunno, D., Aureli, T., & Merla, A. (2013). Mom feels what her child feels: Thermal signatures of vicarious autonomic response while watching children in a stressful situation. Frontiers in Human Neuroscience, 7, 299. doi:10.3389/fnhum.2013.00299CrossRefGoogle Scholar
McClure, F. H., & Myers, H. F. (1999). Cardiovascular responses to conflict stress in African American mother-daughter dyads. Journal of Black Psychology, 25, 522.CrossRefGoogle Scholar
McEwen, B. S. (2006). Sleep deprivation as a neurobiologic and physiologic stressor: Allostasis and allostatic load. Metabolism, 55, S20S23. doi:10.1016/j.metabol.2006.07.008CrossRefGoogle ScholarPubMed
McKillop, H. N., & Connell, A. M. (2018). Physiological linkage and affective dynamics in dyadic interactions between adolescents and their mothers. Developmental Psychobiology, 60, 582594. doi:10.1002/dev.21630CrossRefGoogle ScholarPubMed
Merwin, S. M., Smith, V. C., Kushner, M., Lemay, E. P. Jr, & Dougherty, L. R. (2017). Parent-child adrenocortical concordance in early childhood: The moderating role of parental depression and child temperament. Biological Psychology, 124, 100110. doi:10.1016/j.biopsycho.2017.01.013CrossRefGoogle ScholarPubMed
Middlemiss, W., Granger, D. A., Goldberg, W. A., & Nathans, L. (2012). Asynchrony of mother–infant hypothalamic–pituitary–adrenal axis activity following extinction of infant crying responses induced during the transition to sleep. Early Human Development, 88, 227232. doi:10.1016/j.earlhumdev.2011.08.010CrossRefGoogle ScholarPubMed
Miller, J. G., Vrtička, P., Cui, X., Shrestha, S., Hosseini, S. H., Baker, J. M., & Reiss, A. L. (2019). Inter-brain synchrony in mother-child dyads during cooperation: An fNIRS hyperscanning study. Neuropsychologia, 124, 117124. doi:10.1016/j.neuropsychologia.2018.12.021CrossRefGoogle ScholarPubMed
Mills-Koonce, W. R., Propper, C., Gariepy, J. L., Barnett, M., Moore, G. A., Calkins, S., & Cox, M. J. (2009). Psychophysiological correlates of parenting behavior in mothers of young children. Developmental Psychobiology, 51, 650661. doi:10.1002/dev.20400CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med, 6, e1000097. doi:10.1371/journal.pmed1000097CrossRefGoogle ScholarPubMed
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.CrossRefGoogle ScholarPubMed
Musser, E. D., Backs, R. W., Schmitt, C. F., Ablow, J. C., Measelle, J. R., & Nigg, J. T. (2012). Emotion regulation via the autonomic nervous system in children with attention-deficit/hyperactivity disorder (ADHD). Journal of Abnormal Child Psychology, 39, 841852. doi:10.1007/s10802-011-9499-1CrossRefGoogle Scholar
Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34, 486496. doi:10.1016/j.psyneuen.2009.01.014CrossRefGoogle ScholarPubMed
Natsuaki, M. N., Klimes-Dougan, B., Ge, X., Shirtcliff, E. A., Hastings, P. D., & Zahn-Waxler, C. (2009). Early pubertal maturation and internalizing problems in adolescence: Sex differences in the role of cortisol reactivity to interpersonal stress. Journal of Clinical Child & Adolescent Psychology, 38, 513524. doi:10.1080/15374410902976320CrossRefGoogle ScholarPubMed
Nguyen, T., Schleihauf, H., Kayhan, E., Matthes, D., Vrtička, P., & Hoehl, S. (2020). The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex, 124, 235249. doi:10.1016/j.cortex.2019.11.020CrossRefGoogle ScholarPubMed
Nofech-Mozes, J. A. L., Jamieson, B., Gonzalez, A., & Atkinson, L. (2019). Mother–infant cortisol attunement: Associations with mother–infant attachment disorganization. Development and Psychopathology, 32, 4355. doi: 10.1017/S0954579418001396.CrossRefGoogle Scholar
Oosterman, M., De Schipper, J. C., Fisher, P., Dozier, M., & Schuengel, C. (2010). Autonomic reactivity in relation to attachment and early adversity among foster children. Development and Psychopathology, 22, 109118. doi:10.1017/S0954579409990290CrossRefGoogle ScholarPubMed
Ostfeld-Etzion, S., Golan, O., Hirschler-Guttenberg, Y., Zagoory-Sharon, O., & Feldman, R. (2015). Neuroendocrine and behavioral response to social rupture and repair in preschoolers with autism spectrum disorders interacting with mother and father. Molecular Autism, 6, 11. doi:10.1186/s13229-015-0007-2CrossRefGoogle ScholarPubMed
Ostlund, B. D., Measelle, J. R., Laurent, H. K., Conradt, E., & Ablow, J. C. (2017). Shaping emotion regulation: Attunement, symptomatology, and stress recovery within mother–infant dyads. Developmental Psychobiology, 59, 1525. doi:10.1002/dev.21448CrossRefGoogle ScholarPubMed
Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., Wilder-Smith, O., McGee, H. A., Liu, S., & Goodwin, M. S. (2017). Interpersonal autonomic physiology: A systematic review of the literature. Personality and Social Psychology Review, 21, 99141. doi:10.1177/1088868316628405CrossRefGoogle ScholarPubMed
Perry, R. E., Blair, C., & Sullivan, R. M. (2017). Neurobiology of infant attachment: Attachment despite adversity and parental programming of emotionality. Current Opinion in Psychology, 17, 16. doi:10.1016/j.copsyc.2017.04.022CrossRefGoogle ScholarPubMed
Peters, M. L., Godaert, G. L., Ballieux, R. E., Van Vliet, M., Willemsen, J. J., Sweep, F. C., & Heijnen, C. J. (1998). Cardiovascular and endocrine responses to experimental stress: Effects of mental effort and controllability. Psychoneuroendocrinology, 23, 117.CrossRefGoogle ScholarPubMed
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143.CrossRefGoogle ScholarPubMed
Porges, S. W., & Furman, S. A. (2012). The early development of the autonomic nervous system provides a neural platform for social behaviour: A polyvagal perspective. Infant and Child Development, 20, 106118. doi:10.1002/icd.688CrossRefGoogle Scholar
Pratt, M., Apter-Levi, Y., Vakart, A., Kanat-Maymon, Y., Zagoory-Sharon, O., & Feldman, R. (2017). Mother-child adrenocortical synchrony; Moderation by dyadic relational behavior. Hormones and Behavior, 89, 167175.CrossRefGoogle ScholarPubMed
Provenzi, L., Giusti, L., Fumagalli, M., Frigerio, S., Morandi, F., Borgatti, R., … Montirosso, R. (2019). The dual nature of hypothalamic-pituitary-adrenal axis regulation in dyads of very preterm infants and their mothers. Psychoneuroendocrinology, 100, 172179. doi:10.1016/j.psyneuen.2018.10.007CrossRefGoogle ScholarPubMed
Quiñones-Camacho, L. E., Fishburn, F. A., Camacho, M. C., Hlutkowsky, C. O., Huppert, T. J., Wakschlag, L. S., & Perlman, S. B. (2019). Parent-child neural synchrony: A novel approach to elucidating dyadic correlates of preschool irritability. Journal of Child Psychology and Psychiatry. Advance online publication. doi:10.1111/jcpp.13165Google ScholarPubMed
Reindl, V., Gerloff, C., Scharke, W., & Konrad, K. (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493502. doi:10.1016/j.neuroimage.2018.05.060CrossRefGoogle ScholarPubMed
Ruttle, P. L., Serbin, L. A., Stack, D. M., Schwartzman, A. E., & Shirtcliff, E. A. (2011). Adrenocortical attunement in mother–child dyads: Importance of situational and behavioral characteristics. Biological Psychology, 88, 104111. doi:10.1016/j.biopsycho.2011.06.014CrossRefGoogle ScholarPubMed
Santamaria, L., Noreika, V., Georgieva, S., Clackson, K., Wass, S., & Leong, V. (2020). Emotional valence modulates the topology of the parent-infant inter-brain network. NeuroImage, 207, 116341. doi:10.1016/j.neuroimage.2019.116341CrossRefGoogle ScholarPubMed
Saxbe, D. E., Adam, E. K., Schetter, C. D., Guardino, C. M., Simon, C., McKinney, C. O., & Shalowitz, M. U. (2015b). Cortisol covariation within parents of young children: Moderation by relationship aggression. Psychoneuroendocrinology, 62, 121128. doi:10.1016/j.psyneuen.2015.08.006CrossRefGoogle Scholar
Saxbe, D., Del Piero, L., & Margolin, G. (2015a). Neural correlates of parent–child HPA axis coregulation. Hormones and Behavior, 75, 2532. doi:10.1016/j.yhbeh.2015.07.010CrossRefGoogle Scholar
Saxbe, D. E., Golan, O., Ostfeld-Etzion, S., Hirschler-Guttenberg, Y., Zagoory-Sharon, O., & Feldman, R. (2017). HPA axis linkage in parent–child dyads: Effects of parent sex, autism spectrum diagnosis, and dyadic relationship behavior. Developmental Psychobiology, 59, 776786. doi:10.1002/dev.21537CrossRefGoogle ScholarPubMed
Saxbe, D. E., Margolin, G., Spies Shapiro, L., Ramos, M., Rodriguez, A., & Iturralde, E. (2014). Relative influences: Patterns of HPA axis concordance during triadic family interaction. Health Psychology, 33, 273281. doi:10.1037/a0033509CrossRefGoogle ScholarPubMed
Sethre-Hofstad, L., Stansbury, K., & Rice, M. A. (2002). Attunement of maternal and child adrenocortical response to child challenge. Psychoneuroendocrinology, 27, 731747.CrossRefGoogle ScholarPubMed
Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., Dougherty, D. D., … Eskandar, E. N. (2012). Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature, 488, 218221. doi:10.1038/nature11239CrossRefGoogle ScholarPubMed
Shih, E. W., Quiñones-Camacho, L. E., Karan, A., & Davis, E. L. (2019). Physiological contagion in parent–child dyads during an emotional challenge. Social Development, 28, 620636. doi:10.1111/sode.12359CrossRefGoogle Scholar
Shonkoff, J. P., Garner, A. S., Committee on Psychosocial Aspects of Child and Family Health, & Committee on Early Childhood, Adoption, and Dependent Care. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232e246. doi:10.1542/peds.2011-2663CrossRefGoogle ScholarPubMed
Skoranski, A. M., Lunkenheimer, E., & Lucas-Thompson, R. G. (2017). The effects of maternal respiratory sinus arrhythmia and behavioral engagement on mother-child physiological coregulation. Developmental Psychobiology, 59, 888898. doi:10.1002/dev.21543CrossRefGoogle ScholarPubMed
Smith, J. D., Woodhouse, S. S., Clark, C. A., & Skowron, E. A. (2016). Attachment status and mother–preschooler parasympathetic response to the Strange Situation Procedure. Biological Psychology, 114, 3948. doi:10.1016/j.biopsycho.2015.12.008CrossRefGoogle Scholar
Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21, 8797. doi:10.1017/S0954579409000066CrossRefGoogle ScholarPubMed
Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., & Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21, 4768. doi:10.1017/S0954579409000042CrossRefGoogle ScholarPubMed
Strüber, N., Strüber, D., & Roth, G. (2014). Impact of early adversity on glucocorticoid regulation and later mental disorders. Neuroscience & Biobehavioral Reviews, 38, 1737. doi:10.1016/j.neubiorev.2013.10.015CrossRefGoogle ScholarPubMed
Sturge-Apple, M. L., Davies, P. T., Martin, M. J., Cicchetti, D., & Hentges, R. F. (2012). An examination of the impact of harsh parenting contexts on children's adaptation within an evolutionary framework. Developmental Psychology, 48, 791805. doi:10.1037/a0026908CrossRefGoogle ScholarPubMed
Suveg, C., Braunstein West, K., Davis, M., Caughy, M., Smith, E. P., & Oshri, A. (2019). Symptoms and synchrony: Mother and child internalizing problems moderate respiratory sinus arrhythmia concordance in mother–preadolescent dyads. Developmental Psychology, 55, 366376. doi:10.1037/dev0000648CrossRefGoogle ScholarPubMed
Suveg, C., Shaffer, A., & Davis, M. (2016). Family stress moderates relations between physiological and behavioral synchrony and child self-regulation in mother–preschooler dyads. Developmental Psychobiology, 58, 8397. doi:10.1002/dev.21358CrossRefGoogle ScholarPubMed
Szymanski, C., Müller, V., Brick, T. R., von Oertzen, T., & Lindenberger, U. (2017). Hyper-transcranial alternating current stimulation: Experimental manipulation of inter-brain synchrony. Frontiers in Human Neuroscience, 11, 539. doi:10.3389/fnhum.2017.00539CrossRefGoogle ScholarPubMed
Thomas, J. C., Letourneau, N., Campbell, T. S., Giesbrecht, G. F., & Apron Study Team. (2018). Social buffering of the maternal and infant HPA axes: Mediation and moderation in the intergenerational transmission of adverse childhood experiences. Development and Psychopathology, 30, 921939. doi:10.1017/S0954579418000512CrossRefGoogle ScholarPubMed
Thompson, L. A., & Trevathan, W. R. (2009). Cortisol reactivity, maternal sensitivity, and infant preference for mother's familiar face and rhyme in 6-month-old infants. Journal of Reproductive and Infant Psychology, 27, 143167. doi:10.1080/02646830801918463CrossRefGoogle ScholarPubMed
Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10, 397409. doi:10.1038/nrn2647CrossRefGoogle ScholarPubMed
van Bakel, H. J., & Riksen-Walraven, J. M. (2008). Adrenocortical and behavioral attunement in parents with 1-year-old infants. Developmental Psychobiology, 50, 196201. doi:10.1002/dev.20281CrossRefGoogle ScholarPubMed
Van Leeuwen, P., Geue, D., Thiel, M., Cysarz, D., Lange, S., Romano, M. C., … Grönemeyer, D. H. (2009). Influence of paced maternal breathing on fetal–maternal heart rate coordination. Proceedings of the National Academy of Sciences, 106, 1366113666. doi:10.1073pnas.0901049106CrossRefGoogle ScholarPubMed
Van Puyvelde, M., Loots, G., Meys, J., Neyt, X., Mairesse, O., Simcock, D., & Pattyn, N. (2015). Whose clock makes yours tick? How maternal cardiorespiratory physiology influences newborns’ heart rate variability. Biological Psychology, 108, 132141. doi:10.1016/j.biopsycho.2015.04.001CrossRefGoogle ScholarPubMed
Wass, S. V., Smith, C. G., Clackson, K., Gibb, C., Eitzenberger, J., & Mirza, F. U. (2019). Parents mimic and influence their infant's autonomic state through dynamic affective state matching. Current Biology, 29, 18. doi:10.1016/j.cub.2019.06.016CrossRefGoogle ScholarPubMed
Waters, S. F., & Mendes, W. B. (2016). Physiological and relational predictors of mother-infant behavioral coordination. Adaptive Human Behavior and Physiology, 2, 298310. doi:10.1007/s40750-016-0045-9CrossRefGoogle ScholarPubMed
Waters, S. F., West, T. V., Karnilowicz, H. R., & Mendes, W. B. (2017). Affect contagion between mothers and infants: Examining valence and touch. Journal of Experimental Psychology: General, 146, 10431051. doi:10.1037/xge0000322CrossRefGoogle Scholar
Waters, S. F., West, T. V., & Mendes, W. B. (2014). Stress contagion: Physiological covariation between mothers and infants. Psychological Science, 25, 934942. doi:10.1177/0956797613518352CrossRefGoogle ScholarPubMed
West, S. G., Granger, D. A., Kivlighan, K. T., Psota, T. L., & Hurston, K. L. (2006). Salivary alpha-amylase response to the cold pressor is correlated with cardiac markers of sympathetic activation. Annual meeting of the American Psychosomatic Society.Google Scholar
Williams, S. R., Cash, E., Daup, M., Geronimi, E. M. C., Sephton, S. E., & Woodruff-Borden, J. (2013). Exploring patterns in cortisol synchrony among anxious and nonanxious mother and child dyads: A preliminary study. Biological Psychology, 93, 287295. doi:10.1016/j.biopsycho.2013.02.015CrossRefGoogle ScholarPubMed
Woltering, S., Lishak, V., Elliott, B., Ferraro, L., & Granic, I. (2015). Dyadic attunement and physiological synchrony during mother-child interactions: An exploratory study in children with and without externalizing behavior problems. Journal of Psychopathology and Behavioral Assessment, 37, 624633. doi:10.1007/s10862-015-9480-3CrossRefGoogle Scholar
Woody, M. L., Feurer, C., Sosoo, E. E., Hastings, P. D., & Gibb, B. E. (2016). Synchrony of physiological activity during mother–child interaction: Moderation by maternal history of major depressive disorder. Journal of Child Psychology and Psychiatry, 57, 843850. doi:10.1111/jcpp.12562CrossRefGoogle ScholarPubMed
Wu, T., Snieder, H., & de Geus, E. (2010). Genetic influences on cardiovascular stress reactivity. Neuroscience & Biobehavioral Reviews, 35, 5868.CrossRefGoogle ScholarPubMed
Yamaguchi-Shima, N., Okada, S., Shimizu, T., Usui, D., Nakamura, K., Lu, L., & Yokotani, K. (2007). Adrenal adrenaline-and noradrenaline-containing cells and celiac sympathetic ganglia are differentially controlled by centrally administered corticotropin-releasing factor and arginine–vasopressin in rats. European Journal of Pharmacology, 564, 94102.CrossRefGoogle ScholarPubMed