Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:34:43.016Z Has data issue: false hasContentIssue false

Slowed orienting of covert visual-spatial attention in autism: Specific deficits associated with cerebellar and parietal abnormality

Published online by Cambridge University Press:  04 March 2009

Jeanne Townsend*
Affiliation:
University of California, San Diego, Dept. of Neurosciences, La Jolla, CA Autism & Brain Development Research Lab, Children's Hospital Research Center, San Diego, CA
Eric Courchesne
Affiliation:
University of California, San Diego, Dept. of Neurosciences, La Jolla, CA Autism & Brain Development Research Lab, Children's Hospital Research Center, San Diego, CA
Brian Egaas
Affiliation:
Autism & Brain Development Research Lab, Children's Hospital Research Center, San Diego, CA
*
Jeanne Townsend, Autism & Brain Development Research Lab, 8110 La Jolla Shores Dr., Room 200B, La Jolla, CA 92037; E-mail: [email protected].

Abstract

The most commonly reported finding from structural brain studies in autism is abnormality of the cerebellum. Autopsy and magnetic resonance imaging (MR) studies from nine independent research groups have found developmental abnormality of the cerebellar vermis or hemispheres in the majority of the more than 240 subjects with autism who were studied. We reported previously that patients with autism and those with acquired damage to the cerebellum were slow to shift attention between and within sensory modalities. In this study, we found that patients with autism who come from a group with significant cerebellar abnormality were also slow to orient attention in space.

A subgroup of these patients who have additional or corollary parietal abnormality, like previously studied patients with acquired parietal damage, were also slow to detect and respond to information outside an attended location. Posner, Walker, Friedrich, and Rafal (1984) showed that patients with parietal lesions were slow to respond to contralesional information if they were attending an ipsilesional location. This study has replicated that finding in patients with autism who have developmental bilateral parietal abnormality, and found a strong correlation between the attentional deficits and the amount of neuroanatomic parietal abnormality in these patients. This is the first time in the study of autism that there is evidence for a statistically significant association of the size of a specific brain structural abnormality with a specific behavioral deficit.

These findings illustrate that in autism different patterns of underlying brain pathology may result in different patterns of functional deficits. In conjunction with previous studies of patients with acquired lesions, these data have implications for the brain bases of normal attention. The cerebellum may affect the speed with which attentional resources can be activated, while the parietal cortex affects the ability to use those resources for efficient information processing at locations outside an attended focus. Deficits in the speed and efficiency with which neural activity can be modulated to facilitate processing can clearly influence cognitive function. Such deficits may contribute to the behavioral disabilities that characterize autism.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrien, J. L., Faure, M., Perrot, A., Hameury, L., Garreau, B., Barthelemy, C., & Sauvage, D. (1991). Autism and family home movies: Preliminary findings. Journal of Autism and Developmental Disorders, 21, 4349.CrossRefGoogle ScholarPubMed
Akshoomoff, N., & Courchesne, E. (1992). ERP evidence for a shifting attention deficit in patients with damage to the cerebellum. Behavioral Neuroscience, 106, 731738.Google Scholar
Akshoomoff, N., & Courchesne, E. (1994). Intramodality shifting attention in children with damage to the cerebellum. Journal of Cognitive Neuroscience, 6, 388399.CrossRefGoogle Scholar
Akshoomoff, N., Courchesne, E., Press, G., & Iragui, V. (1992). Contribution of the cerebellum to neuropsychological functioning: Evidence from a case of cerebellar degenerative disorder. Neuropsychologia, 30, 315328.Google Scholar
American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders, 3rd edition, revised. Washington, DC: Author.Google Scholar
Arin, D. M., Bauman, M. L., & Kemper, T. L. (1991). The distribution of Purkinje cell loss in the cerebellum in autism. Neurology, 41, Suppl. 1, 307.Google Scholar
Attig, E., Botez, M. I., Hublet, C., Vervonck, C., Jacquy, J., & Capon, A. (1991). Diachiasis cerebral croise par lesion cerebelleuse: Role du cervelet dans les fontions mentales (Cerebral crossed diaschisis caused by cerebellar lesion: Role of the cerebellum in mental functions.) Revue Neurologique, 147(3), 200207.Google Scholar
Bachevalier, J. (1994). Medial temporal lobe structures and autism: A review of clinical and experimental findings. Neuropsychologia, 32, 627648.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Ring, H., Moriarty, J., Schmitz, B., Costa, D., & Ell, P. (1994). Recognition of mental state terms. Clinical findings in children with autism and a functional neuroimaging study of normal adults. British Journal of Psychology, 165, 640649.CrossRefGoogle Scholar
Bauman, M. L. (1991). Microscopic neuroanatomic abnormalities in autism. Pediatrics, 87, 791796.Google Scholar
Bauman, M. L., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866874.CrossRefGoogle ScholarPubMed
Bauman, M. L., & Kemper, T. L. (1986). Developmental cerebellar abnormalities: A consistent finding in early infantile autism. Neurology, 36, Suppl. 1, 190.Google Scholar
Bauman, M. L., & Kemper, T. L. (1990). Limbic and cerebellar abnormalities are also present in an autistic child of normal intelligence. Neurology, 40, Suppl. 1, 359.Google Scholar
Botez, M. I., Botez, T., Elie, R., & Attig, E. (1989). Role of the cerebellum in complex human behavior. The Italian Journal of Neurological Sciences, 10, 291300.Google Scholar
Botez, M. I., Gravel, J., Attig, E., & Vezina, J. L. (1985). Reversible chronic cerebellar ataxia after phenytoin intoxication. Possible role of the cerebellum in cognitive thought. Neurology, 35, 11521157.CrossRefGoogle Scholar
Botez, M. I., Leveille, J., Lambert, R., & Botez, T. (1991). Single photon emission computed tomography (SPECT) in cerebellar disease: Cerebello-cerebral diaschsis. European Neurology, 31(6), 405412.Google Scholar
Bracke-Tolkmitt, R., Linden, A., Canavan, A. G. M., Rockstroh, B., Scholtz, E., Wessel, K., & Diener, H. C. (1989). The cerebellum contributes to mental skills. Behavioral Neuroscience, 103(2), 442446.Google Scholar
Bryson, E. E., Wainwright-Sharp, J. A., & Smith, I. M. (1990). Autism: A developmental spatial neglect syndrome? In Enns, J. T. (Ed.), The development of attention: Research and theory (pp. 405427). North-Holland: Elsevier Science.CrossRefGoogle Scholar
Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence of an inefficient attentional lens. Journal of Abnormal Psychology, 103(3), 535543.Google Scholar
Burack, J., & Iarocci, G. (03, 1995). Visual filtering and covert orienting in developmentally disordered persons with and without autism. Presented at the biennial meeting of the Society for Research in Child Development, Indianapolis, IN.Google Scholar
Casey, B. J., Gordon, C. T., Mannheim, G. B., & Rumsey, J. (1993). Dysfunctional attention in autistic savants. Journal of Clinical and Experimental Neuropsychology. 15(6), 933946.Google Scholar
Ciesielski, K. T., Allen, P. A., Sinclair, B. D., Pabst, H. F., Yanossky, R., & Ludwig, R. (1990). Hypoplasia of cerebellar vermis in autism and childhood leukemia. In: Proceedings of the Fifth Annual Child Neurology Congress, Tokyo, Japan.Google Scholar
Courchesne, E. (1987). A neurophysiologic view of autism. In Schopler, E. & Mesibov, G. (Eds.), Neurobiological issues in autism. New York: Plenum Press.Google Scholar
Courchesne, E. (1989). Neuroanatomical systems involved in infantile autism. In Dawson, G. (Ed.), Autism (pp. 119143). New York: Guilford Press.Google Scholar
Courchesne, E. (1991). Neuroanatomic imaging in autism. Pediatrics, 87, 781790.Google Scholar
Courchesne, E. (1995a). Infantile Autism. Part I: MR imaging abnormalities and their neurobehavioral correlates. International Pediatrics, 10(2), 5063.Google Scholar
Courchesne, E. (1995b). Infantile Autism. Part 2: A new neurodevelopmental model. International Pediatrics, 10(2), 8696.Google Scholar
Courchesne, E., Akshoomoff, N., & Townsend, J. (1990). Recent advances in autism. Current Opinion In Pediatrics, 2, 685693.Google Scholar
Courchesne, E., Chisum, H., & Townsend, J. (1994a). Neural activity-dependent brain changes in development: Implications for psychopathology. Development and Psychopathology, 6(4), 697722.Google Scholar
Courchesne, E., Press, G. A., & Yeung-Courchesne, R. (1993). Parietal lobe abnormalities detected with MR in images of patients with infantile autism. American Journal of Roentgenology, 160, 387393.CrossRefGoogle ScholarPubMed
Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G., Haas, R., Lincoln, A., & Schreibman, L. (1994b). Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: Identification of hypoplastic and hyperplastic subgroups with MR imaging. American Journal of Roentgenology, 162, 123130.Google Scholar
Courchesne, E., Townsend, J., & Chase, C. (1995). Neurodevelopmental principles guide research on developmental psychopathologies. In Cicchetti, D. & Cohen, D. (Eds.), Developmental Psychopathology, Vol 2 (pp. 195226). New York: John Wiley.Google Scholar
Courchesne, E., Townsend, J., Akshoomoff, N. A., Saitoh, O., Yeung-Courchesne, R., Lincoln, A., James, H., Haas, R. H., Schreibman, L., & Lau, L. (1994c). Impairment in shifting attention in autistic and cerebellar patients. Behavioral Neuroscience, 108(5), 848865.CrossRefGoogle ScholarPubMed
Courchesne, E., Townsend, J., Akshoomoff, N. A., Yeung-Courchesne, R., Press, G., Murakami, J., Lincoln, A., James, H., Saitoh, O., Egaas, B., Haas, R. H., & Schreibman, L. (1994d). A new finding: Impairment in shifting attention in autistic and cerebellar patients. In Broman, S. H. & Grafman, J. (Eds.), Atypical Cognitive Deficits in Developmental Disorders: Implications for Brain Function (pp. 101137). Hillsdale, NJ: Erlbaum.Google Scholar
Courchesne, E., Townsend, J., & Saitoh, O. (1994e). The brain in infantile autism: Posterior fossa structures are abnormal. Neurology, 44, 214223.CrossRefGoogle ScholarPubMed
Courchesne, E., Yeung-Courchesne, R., & Egaas, B. (1994f). Methodology in neuroanatomic measurement. Neurology, 44, 203208.Google Scholar
Courchesne, E., Yeung-Courchesne, R., Press, G. T. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar lobules VI and VII in infantile autism. New England Journal of Medicine, 318, 13491354.Google Scholar
Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Science, 81, 45864590.CrossRefGoogle ScholarPubMed
Crispino, L., & Bullock, T. H. (1984). Cerebellum mediates modality-specific modulation of sensory responses of the midbrain and forebrain in rat. Proceedings of the National Academy of Science, 81, 29172920.CrossRefGoogle ScholarPubMed
Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873880.Google Scholar
Damasio, A. R., & Maurer, R. G. (1978). A neurological model for childhood autism. Archives of Neurology, 55(120), 777786.Google Scholar
DeLong, G. R. (1992). Autism, amnesia, hippocampus and learning. Neurosciences Biobehavioral Review, 16. 6370.Google Scholar
DeMyer, M., Hingtgen, J., & Jackson, R. (1981). Infantile autism reviewed: A decade of research. Schizophrenia Bulletin, 7, 388451.Google Scholar
Deutsch, G. (1992). The nonspecificity of frontal dysfunction in disease and altered states: Cortical blood flow evidence. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 5(4), 301307.Google Scholar
Egaas, B., Courchesne, E., & Saitoh, O. (1995). Reduced size of corpus callosum in autism. Archives of Neurology, 45, 317324.Google Scholar
Folstein, S. E., & Rutter, M. L. (1987). Autism: Familial aggression and genetic implications. In Schopler, E. & Mesibov, G. B. (Eds.), Neurobiological issues in autism (pp. 83105). New York: Plenum Press.Google Scholar
Gaffney, G. R., Tsai, L. Y., Kuperman, S., & Minchin, S. (1987). Cerebellar structure in autism. American Journal of Diseases in Children, 141, 13301332.Google Scholar
Garber, H. J., & Ritvo, E. R. (1992). Magnetic resonance imaging of the posterior fossa in autistic adults. American Journal of Psychiatry. 149, 245247.Google Scholar
Ghez, C. (1991). The cerebellum. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of neural sciences, 3rd Ed. (pp. 626646). New York: Elsevier Science.Google Scholar
Gilman, S., Bloedel, J. R., & Lechtenberg, R. (1981). Disorders of the cerebellum. Philadelphia: FA Davis.Google Scholar
Glickstein, M., & Yeo, C. (1990). The cerebellum and motor learning. Journal of Cognitive Neuroscience. 2. 6980.Google Scholar
Grafman, J., Litvan, I., Massaquoi, S., Stewart, M., Sirigu, A., & Hallett, M. (1992). Cognitive planing deficit in patients with cerebellar atrophy. Neurology, 42, 14931496.Google Scholar
Haas, R. H., Townsend, J., Courchesne, E., Lincoln, A. J., Schreibman, L., & Yeung-Courchesne, R. (1996). Neurologic abnormalities in infantile autism. Journal of Child Neurology, 77(2), 8492.Google Scholar
Hallett, M., Lebiedowska, M. K., Thomas, S. L., Stanhope, S. J., Denckla, M. D., & Rumsey, J. (1993). Locomotion of autistic adults. Archives of Neurology, 50, 13041308.CrossRefGoogle ScholarPubMed
Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., & Kuroda, Y. (1995). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders, 25, 118.Google Scholar
Hillyard, S. A., & Mangun, G. R. (1987). Sensory gating as a physiological mechanism for visual selective attention. In Johnson, R., Parasuraman, R., & Rohrbaugh, J. W. (Eds.), Current trends in eventrelated potential research (pp. 6167). Amsterdam: Elsevier.Google Scholar
Holmes, G. (1939). The cerebellum of man. Brain, 62, 130.Google Scholar
Holttum, J. R., Minshew, N. J., Sanders, R. S., & Phillips, N. E. (1992). Magnetic resonance imaging of the posterior fossa in autism. Biological Psychiatry. 32, 10911101.CrossRefGoogle ScholarPubMed
Horwitz, B., Rumsey, J. M., Grady, C. L., & Rapoport, S. I. (1988). The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Archives of Neurology, 45, 749755.Google Scholar
Hsu, M., Yeung-Courchesne, R., Courchesne, E., & Press, G. A. (1991). Absence of magnetic resonance imaging evidence of pontine abnormality in infantile autism. Archives of Neurology, 48, 11601163.Google Scholar
Hughes, C., Russell, J., & Robbins, T. W. (1994). Evidence for executive dysfunction in autism. Neuropsychologia, 32, 477492.Google Scholar
Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1. 136152.Google Scholar
Jones, V., & Prior, M. (1985). Motor Imitation Abilities and Neurological Signs in Autistic Children. Journal of Autism and Developmental Disorders, 75(1), 3746.Google Scholar
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Killackey, H. P. (1990). Neocortical expansion: An attempt toward relating phytogeny and ontogeny. Journal of Cognitive Neuroscience, 2, 117.Google Scholar
Kim, S-G., Ugurbil, K., & Strick, P. L. (1994). Activation of a cerebellar output nucleus during cognitive processing. Science, 265, 949951.Google Scholar
Kimura, S., Nakamura, H., Matsumura, K., Morohashi, S., Ueoka, Y., Hasegawa, A., & Yonekura, Y. (1989). Crossed “cerebral” diaschsis? Seven cases with unilateral cerebellar vascular lesion which showed decreased perfusion in the contralateral cerebral cortex. Kaku Igaku Japanese Journal of Nuclear Medicine, 26(10), 12591266.Google ScholarPubMed
Kleiman, M. D., Neff, S., & Rosman, N. P. (1992). The brain in infantile autism: Are posterior fossa structures abnormal? Neurology, 42, 753760.Google Scholar
LaBerge, D. (1990). Thalamic and cortical mechanisms of attention suggested by recent positron emission tomographic experiments. Journal of Cognitive Neuroscience, 2(4), 358372.Google Scholar
LeCouteur, A., Rutter, M., Lord, C., Rios, P., Robertson, S., Holdgrafer, M., & McLennan, J. (1989). Autism diagnostic interview: A standardized investigator-based instrument. Journal of Autism and Developmental Disorders, 19. 363387.Google Scholar
Leiner, H. C., Leiner, L., & Dow, S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443454.Google Scholar
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1989). Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behavioral Neuroscience, 103(5), 9981008.CrossRefGoogle ScholarPubMed
Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. (1989). Diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185212.Google Scholar
Lovaas, O. I., Schreibman, L., Koegel, R. L., & Rehm, R. (1971). Selective responding by autistic children to multiple sensory input. Journal of Abnormal Psychology. 77, 211222.CrossRefGoogle ScholarPubMed
Lovaas, O. I., Koegel, R. L., & Schreibman, L. (1979). Stimulus ovcrselectivity in autism: A review of research. Psychological Bulletin, 86, 12361254.Google Scholar
Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 10571074.Google Scholar
Maurer, R. G., & Damasio, A. R. (1982). Childhood autism from the point of view of behavioral neurology. Journal of Autism and Developmental Disorders, 12(2), 177184.CrossRefGoogle ScholarPubMed
McEvoy, R. E., Rogers, S. J., & Pennington, B. F. (1993). Executive function and social communication deficits in young autistic children. Journal of Child Psychiatry, 34, 563578.CrossRefGoogle ScholarPubMed
Mesulam, M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10. 309325.Google Scholar
Murakami, J. W., Courchesne, E., Press, G. A., Yeung-Courchesne, R., & Hesselink, J. R. (1989). Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Archives in Neurology, 46, 689694.Google Scholar
Newman, P. P., & Reza, H. (1979). Functional relationships between the hippocampus and the cerebellum: An electrophysiological study of the cat. Journal of Physiology (London), 287, 405426.Google Scholar
Ornitz, E. M. (1974). The modulation of sensory input and motor output in autistic children. Journal of Autism and Childhood Schizophrenia, 4(3), 197215.CrossRefGoogle ScholarPubMed
Ozonoff, S. (1995). Executive functions in autism. In Schopler, E., Mesibov, G. B. (Eds.), Learning and cognition in autism. Current Issues in Autism (pp. 199219). New York: Plenum Press.Google Scholar
Petersen, S. E., Robinson, D. L., & Currie, J. N. (1989). Influences of lesions of parietal cortex on visual spatial attention in humans. Experimental Brain Research, 76, 267s–280.Google Scholar
Piven, J., Nehme, E., Simon, J., Barta, P., Pearlson, G., & Folstein, S. E. (1992). Magnetic resonance imaging in autism: Measurement of the cerebellum, pons and fourth ventricle. Biological Psychiatry, 31, 491504.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.Google Scholar
Posner, M. I., Walker, J. A., Freidrich, F. A., & Rafal, R. D. (1987). How do the parietal lobes direct covert attention? Neuropsychologia, 25(1 A), 135145.Google Scholar
Posner, M. I., Walker, J. A., Freidrich, F. A., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. The Journal of Neuroscience, 4(1), 18631874.Google Scholar
Rafal, R. D., & Posner, M. I. (1987). Deficits in human visual spatial attention following thalamic lesions. Proceedings of the National Academy of Science, 84, 73497353.Google Scholar
Rapin, I. (1991). Autistic children: diagnosis and clinical features. Pediatrics, 87, 751760.Google Scholar
Raz, N., Torres, I. J., Spencer, W. D., White, K., & Acker, J. D. (1992). Age-related regional differences in cerebellar vermis observed in vivo. Archives of Neurology, 49, 412416.Google Scholar
Rimland, B. (1964). Infantile autism: the syndrome and its implications for a neural theory of behavior. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., & Ritvo, A. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLANSAC autopsy research report. American Journal of Psychiatry, 143, 862866.Google ScholarPubMed
Rousseaux, M., & Steinling, M. (1992). Crossed hemispheric diaschsis in unilateral cerebellar lesions. Stroke, 23(4), 511514.Google Scholar
Rumsey, J. M., & Hamburger, S. D. (1988). Neuropsychological findings in high-functioning men with infantile autism, residual state. Journal of Clinical and Experimental Neuropsychology, 70(2), 201221.Google Scholar
Saitoh, O., Courchesne, E., Egaas, B., Lincoln, A. J., & Schreibman, L. (1995). Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology, 45. 317324.CrossRefGoogle ScholarPubMed
Schmahmann, J. D. (1991). The cerebellar contribution to higher function. Archives of Neurology, 48(11), 11781187.Google Scholar
Schreibman, L., & Lovaas, O. I. (1973). Overselective response to social stimuli by autistic children. Journal of Abnormal Child Psychology, 1, 152168.Google Scholar
Segawa, M., & Nomura, Y. (1991). Pathophysiology of human locomotion: studies on clinical cases. In Shimamura, M., Grillner, S., Edgerton, V. R. (Eds.), Neurobiological basis of human locomotion (pp. 317328). Tokyo: Japan Scientific Societies Press.Google Scholar
Swanson, J. M., Posner, M. I., Potkin, S., Donforte, S., Youpa, D., Fiore, C., Cantwell, D., & Crinella, F. (1991). Activating tasks for the study of visualspatial attention in ADHD children: A cognitive anatomic approach. Journal of Child Neurology, 6, Suppl, S119–S127.CrossRefGoogle Scholar
Tanguay, P. E., & Edwards, R. M. (1982). Electrophysiological studies of autism: The whisper of the bang. Journal of Autism and Developmental Disorders, 72(2), 177184.Google Scholar
Townsend, J., & Courchesne, E. (1994). Parietal damage and narrow “spotlight” spatial attention. Journal of Cognitive Neuroscience, 6(3), 220232.Google Scholar
Townsend, J., Courchesne, E., & Egaas, B. (10, 1992). Deficits in orienting attention in patients with cerebellar and parietal damage. Presented at the Society for Neuroscience 22nd annual meeting, Anaheim, California. [Abstract] Society for Neuroscience Abstracts, 75(1), 332.Google Scholar
Townsend, J., Singer, N. S., & Courchesne, E. (in press). Visual attention abnormalities in autism: Delayed orienting to location. Journal of the International Neuropsychological Society.Google Scholar
Tronick, E. Z. (1982). Affectivity and sharing. In Tronick, E. Z. (Ed.), Social interchange in infancy: Affect cognition and communication (pp. 16). Baltimore: University Park Press.Google Scholar
Vannier, M. W., Butterfield, R. L., Jordan, D., Murphy, W. A., Levitt, R. G., & Gado, M. (1985). Multispectral analysis of magnetic resonance images. Radiology, 154, 221.Google Scholar
Vannier, M. W., Butterfield, R. L., Rickman, D. J., Jordan, D. M., Murphy, W. A., & Biondetti, P. R. (1987). Multispectral analysis magnetic resonance image analysis. CRC Critical Reviews in Biomedical Engineering, 15, 117144.Google Scholar
Vilensky, J. A., Damasio, A. R., & Maurer, R. G. (1981). Gait disturbance in patients with autistic behavior. Archives of Neurology, 38, 646649.Google Scholar
Wainwright-Sharp, J. A., & Bryson, S. E. (1993). Visual orienting deficits in high-functioning people with autism. Journal of Autism and Developmental Disorders, 23(1), 113.CrossRefGoogle ScholarPubMed
Wallesch, C. W., & Horn, A. (1990). Long-term effects of cerebellar pathology on cognitive functions. Brain and Cognition, 14, 1925.Google Scholar
Williams, R. S., Hauser, S. L., Purpura, D. P., DeLong, R., & Swisher, C. N. (1980). Autism and mental retardation: Neuropathological studies performed in four retarded persons with autistic behavior. Archives of Neurology, 37, 749753.Google Scholar