Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:54:33.513Z Has data issue: false hasContentIssue false

The role of the amygdala in bipolar disorder development

Published online by Cambridge University Press:  07 October 2008

Amy Garrett
Affiliation:
Stanford University School of Medicine
Kiki Chang*
Affiliation:
Stanford University School of Medicine
*
Address correspondence and reprint requests to: Kiki D. Chang, Division of Child and Adolescent Psychiatry, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305-5540; E-mail: [email protected].

Abstract

The amygdala has received great interest as a possible neurophysiological substrate of bipolar disorder (BD). This review summarizes information about the structure and function of the amygdala with attention to its role in experienced emotion and mood. We review the evidence for amygdala pathology in psychiatric conditions and discuss the role of the amygdala in BD during development. There appear to be consistent findings in the neuroimaging literature that suggest an etiological model for BD that involves abnormalities in the structure and function of the amygdala, but also depends on the failure of prefrontal cortical regions to modulate amygdala activity. In addition, evidence is accumulating to suggest that this model has flexible outcomes, depending on factors intrinsic and extrinsic to BD, and may follow several possible paths across the course of maturational development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Both authors shared equally in the preparation of the manuscript. This work was supported by NIH Grant 5RO1MH077047 (to K.C.).

References

Adolphs, R., Tranel, D., & Damasio, A. R. (1998). The human amygdala in social judgment. Nature, 393, 470474.CrossRefGoogle ScholarPubMed
Altshuler, L. L., Bartzokis, G., Grieder, T., Curran, J., Jimenez, T., Leight, K. et al. (2000). An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biological Psychiatry, 48, 147162.CrossRefGoogle ScholarPubMed
Altshuler, L. L., Bookheimer, S., Proenza, M. A., Townsend, J., Sabb, F., Firestine, A., et al. (2005). Increased amygdala activation during mania: A functional magnetic resonance imaging study. American Journal of Psychiatry, 162, 12111213.CrossRefGoogle Scholar
Amaral, D. G., Bauman, M. D., Capitanio, J. P., Lavenex, P., Mason, W. A., Mauldin-Jourdain, M. L., et al. (2003). The amygdala: Is it an essential component of the neural network for social cognition? Neuropsychologia, 41, 517522..CrossRefGoogle ScholarPubMed
Amaral, D. G., Behniea, H., & Kelly, J. L. (2003). Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience, 118, 10991120.CrossRefGoogle Scholar
Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411, 305309.CrossRefGoogle ScholarPubMed
Anderson, A. K., & Phelps, E. A. (2002). Is the human amygdala critical for the subjective experience of emotion? Evidence of intact dispositional affect in patients with amygdala lesions. Journal of Cognitive Neuroscience, 14, 709720.CrossRefGoogle ScholarPubMed
Aroniadou-Anderjaska, V., Fritsch, B., Qashu, F., & Braga, M. F. (2008). Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Research, 78, 102116.CrossRefGoogle ScholarPubMed
Aroniadou-Anderjaska, V., Qashu, F., & Braga, M. F. (2007). Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: Implications for epilepsy and anxiety disorders. Amino Acids, 32, 305315.CrossRefGoogle ScholarPubMed
Bachevalier, J. (2000). The amygdala, social behavior, and autism. In Aggleton, J. P. (Ed.), The amygdala: A functional analysis. New York: Oxford University Press.Google Scholar
Bachevalier, J., & Loveland, K. A. (2006). The orbitofrontal–amygdala circuit and self-regulation of social-emotional behavior in autism. Neuroscience and Biobehavioral Reviews, 30, 97117.CrossRefGoogle ScholarPubMed
Bachevalier, J., & Malkova, L. (2006). The amygdala and development of social cognition: Theoretical comment on Bauman, Toscano, Mason, Lavenex, and Amaral. Behavioral Neuroscience, 120, 989991.CrossRefGoogle ScholarPubMed
Baird, A. A., Gruber, S. A., Fein, D. A., Maas, L. C., Steingard, R. J., Renshaw, P. F., et al. (1999). Functional magnetic resonance imaging of facial affect recognition in children and adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 195199.CrossRefGoogle ScholarPubMed
Barad, M., Gean, P. W., & Lutz, B. (2006). The role of the amygdala in the extinction of conditioned fear. Biological Psychiatry, 60, 322328.CrossRefGoogle ScholarPubMed
Bauman, M. D., Lavenex, P., Mason, W. A., Capitanio, J. P., & Amaral, D. G. (2004). The development of social behavior following neonatal amygdala lesions in rhesus monkeys. Journal of Cognitive Neuroscience, 16, 13881411.CrossRefGoogle ScholarPubMed
Baxter, M. G., & Murray, E. A. (2002). The amygdala and reward. Nature Reviews. Neuroscience, 3, 563573.CrossRefGoogle ScholarPubMed
Blair, R. J., Peschardt, K. S., Budhani, S., Mitchell, D. G., & Pine, D. S. (2006). The development of psychopathy. Journal of Child Psychology and Psychiatry, 47, 262276.CrossRefGoogle ScholarPubMed
Blumberg, H. P., Charney, D. S., & Krystal, J. H. (2002). Frontotemporal neural systems in bipolar disorder. Seminars in Clinical Neuropsychiatry, 7, 243254.CrossRefGoogle ScholarPubMed
Blumberg, H. P., Donegan, N. H., Sanislow, C. A., Collins, S., Lacadie, C., Skudlarski, P., et al. (2005). Preliminary evidence for medication effects on functional abnormalities in the amygdala and anterior cingulate in bipolar disorder. Psychopharmacology (Berlin), 183, 308313.CrossRefGoogle ScholarPubMed
Blumberg, H. P., Fredericks, C., Wang, F., Kalmar, J. H., Spencer, L., Papademetris, X., et al. (2005). Preliminary evidence for persistent abnormalities in amygdala volumes in adolescents and young adults with bipolar disorder. Bipolar Disorders, 7, 570576.CrossRefGoogle Scholar
Blumberg, H. P., Kaufman, J., Martin, A., Whiteman, R., Zhang, J. H., Gore, J. C., et al. (2003). Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Archives of General Psychiatry, 60, 12011208.CrossRefGoogle ScholarPubMed
Bowley, M. P., Drevets, W. C., Ongur, D., & Price, J. L. (2002). Low glial numbers in the amygdala in major depressive disorder. Biological Psychiatry, 52, 404412.CrossRefGoogle ScholarPubMed
Braesicke, K., Parkinson, J. A., Reekie, Y., Man, M. S., Hopewell, L., Pears, A., et al. (2005). Autonomic arousal in an appetitive context in primates: A behavioural and neural analysis. European Journal of Neuroscience, 21, 17331740.CrossRefGoogle Scholar
Brambilla, P., Harenski, K., Nicoletti, M. A., Mallinger, A. G., Frank, E., Kupfer, D. J., et al. (2001). Anatomical MRI study of basal ganglia in bipolar disorder patients. Psychiatry Research, 106, 6580.CrossRefGoogle ScholarPubMed
Brandt, C., Ebert, U. & Loscher, W. (2004). Epilepsy induced by extended amygdala-kindling in rats: Lack of clear association between development of spontaneous seizures and neuronal damage. Epilepsy Research, 62, 135156.CrossRefGoogle ScholarPubMed
Bremner, J. D., Narayan, M., Anderson, E. R., Staib, L. H., Miller, H. L., & Charney, D. S. (2000). Hippocampal volume reduction in major depression. American Journal of Psychiatry, 157, 115118.CrossRefGoogle ScholarPubMed
Caetano, S. C., Hatch, J. P., Brambilla, P., Sassi, R. B., Nicoletti, M., Mallinger, A. G., et al. (2004). Anatomical MRI study of hippocampus and amygdala in patients with current and remitted major depression. Psychiatry Research, 132, 141147.CrossRefGoogle ScholarPubMed
Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., et al. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Science of the United States of America, 93, 80168021.CrossRefGoogle ScholarPubMed
Canli, T. (2004). Functional brain mapping of extraversion and neuroticism: Learning from individual differences in emotion processing. Journal of Personality, 72, 11051132.CrossRefGoogle ScholarPubMed
Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H., & Gabrieli, J. D. (2002). Amygdala response to happy faces as a function of extraversion. Science, 296, 2191.CrossRefGoogle ScholarPubMed
Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D., & Cahill, L. (2000). Event-related activation in the human amygdala associates with later memory for individual emotional experience. Journal of Neuroscience, 20, RC99.CrossRefGoogle ScholarPubMed
Chang, K., Adleman, N., Dienes, K., Barnea-Goraly, N., Reiss, A., & Ketter, T. (2003). Decreased N-acetylaspartate in children with familial bipolar disorder. Biological Psychiatry, 53, 10591065.CrossRefGoogle ScholarPubMed
Chang, K., Adleman, N. E., Dienes, K., Simeonova, D. I., Menon, V., & Reiss, A. (2004). Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: A functional magnetic resonance imaging investigation. Archives of General Psychiatry, 61, 781792.CrossRefGoogle ScholarPubMed
Chang, K., Howe, M., Gallelli, K., & Miklowitz, D. (2006). Prevention of pediatric bipolar disorder: Integration of neurobiological and psychosocial processes. Annals of the New York Academy of Science, 1094, 235247.CrossRefGoogle ScholarPubMed
Chang, K., Karchemskiy, A., Barnea-Goraly, N., Garrett, A., Simeonova, D. I., & Reiss, A. (2005). Reduced amygdalar gray matter volume in familial pediatric bipolar disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 565573.CrossRefGoogle ScholarPubMed
Chang, K. D., Wagner, C., Garrett, A., Howe, M., & Reiss, A. (2008). A preliminary functional magnetic resonance imaging study of prefrontal–amygdalar activation changes in adolescents with bipolar depression treated with lamotrigine. Bipolar Disorders 10, 426431.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Blender, J. A. (2006). A multiple-levels-of-analysis perspective on resilience: Implications for the developing brain, neural plasticity, and preventive interventions. Annals of the New York Academy of Science, 1094, 248258.CrossRefGoogle ScholarPubMed
DelBello, M. P., Zimmerman, M. E., Mills, N. P., Getz, G. E., & Strakowski, S. M. (2004). Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disorders, 6, 4352.CrossRefGoogle ScholarPubMed
Dickstein, D. P., Milham, M. P., Nugent, A. C., Drevets, W. C., Charney, D. S., Pine, D. S., et al. (2005). Frontotemporal alterations in pediatric bipolar disorder: Results of a voxel-based morphometry study. Archives of General Psychiatry, 62, 734741.CrossRefGoogle ScholarPubMed
Dolcos, F., LaBar, K. S., & Cabeza, R. (2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42, 855863.CrossRefGoogle ScholarPubMed
Doty, T. J., Payne, M. E., Steffens, D. C., Beyer, J. L., Krishnan, K. R., & Labar, K. S. (2008). Age-dependent reduction of amygdala volume in bipolar disorder. Psychiatry Research, 163, 8494.CrossRefGoogle ScholarPubMed
Drevets, W. C., Price, J. L., Simpson, J. R. Jr., Todd, R. D., Reich, T., Vannier, M., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824827.CrossRefGoogle ScholarPubMed
Emery, N. J., Capitanio, J. P., Mason, W. A., Machado, C. J., Mendoza, S. P., & Amaral, D. G. (2001). The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115, 515544.CrossRefGoogle ScholarPubMed
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488.CrossRefGoogle ScholarPubMed
Foland, L. C., Altshuler, L. L., Bookheimer, S. Y., Eisenberger, N., Townsend, J., & Thompson, P. M. (2008). Evidence for deficient modulation of amygdala response by prefrontal cortex in bipolar mania. Psychiatry Research, 162, 2737.CrossRefGoogle ScholarPubMed
Foland, L. C., Altshuler, L. L., Sugar, C. A., Lee, A. D., Leow, A. D., Townsend, J., et al. (2008). Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. NeuroReport, 19, 221224.CrossRefGoogle ScholarPubMed
Frazier, J. A., Ahn, M. S., DeJong, S., Bent, E. K., Breeze, J. L., & Giuliano, A. J. (2005). Magnetic resonance imaging studies in early-onset bipolar disorder: A critical review. Harvard Review of Psychiatry, 13, 125140.CrossRefGoogle ScholarPubMed
Frodl, T., Meisenzahl, E., Zetzsche, T., Bottlender, R., Born, C., Groll, C., Jager, M., et al. (2002). Enlargement of the amygdala in patients with a first episode of major depression. Biological Psychiatry, 51, 708714.CrossRefGoogle ScholarPubMed
Garrett, A. S., & Maddock, R. J. (2006). Separating subjective emotion from the perception of emotion-inducing stimuli: An fMRI study. NeuroImage, 33, 263274.CrossRefGoogle ScholarPubMed
Goossens, L., Sunaert, S., Peeters, R., Griez, E. J., & Schruers, K. R. (2007). Amygdala hyperfunction in phobic fear normalizes after exposure. Biological Psychiatry, 62, 11191125.CrossRefGoogle ScholarPubMed
Hamilton, J. P., & Gotlib, I. H. (2008). Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biological Psychiatry, 63, 11551162.CrossRefGoogle ScholarPubMed
Hastings, R. S., Parsey, R. V., Oquendo, M. A., Arango, V., & Mann, J. J. (2004). Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology, 29, 952959.CrossRefGoogle ScholarPubMed
Kalin, N. H., Shelton, S. E., Davidson, R. J., & Kelley, A. E. (2001). The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. Journal of Neuroscience, 21, 20672074.CrossRefGoogle Scholar
Ketter, T. A., Andreason, P. J., George, M. S., Lee, C., Gill, D. S., Parekh, P. I., et al. (1996). Anterior paralimbic mediation of procaine-induced emotional and psychosensory experiences. Archives of General Psychiatry, 53, 5969.CrossRefGoogle ScholarPubMed
Ketter, T. A., & Wang, P. W. (2003). The emerging differential roles of GABAergic and antiglutamatergic agents in bipolar disorders. Journal of Clinical Psychiatry, 64(Suppl. 3), 1520.Google ScholarPubMed
Killgore, W. D., & Yurgelun-Todd, D. A. (2005). Social anxiety predicts amygdala activation in adolescents viewing fearful faces. NeuroReport, 16, 16711675.CrossRefGoogle ScholarPubMed
Kluver, H., & Bucy, P. (1938). An analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey with special reference to psychic blindness. Journal of Psychology, 5, 3354.CrossRefGoogle Scholar
Koob, G. F., & Le Moal, M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59, 2953.CrossRefGoogle ScholarPubMed
LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E., & Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study. Neuron, 20, 937945.CrossRefGoogle ScholarPubMed
Lane, R. D., Reiman, E. M., Bradley, M. M., Lang, P. J., Ahern, G. L., Davidson, R. J., et al. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 35, 14371444.CrossRefGoogle ScholarPubMed
Lau, J. Y., Lissek, S., Nelson, E. E., Lee, Y., Roberson-Nay, R., Poeth, K., et al. (2008). Fear conditioning in adolescents with anxiety disorders: Results from a novel experimental paradigm. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 94102.CrossRefGoogle ScholarPubMed
LeDoux, J. (2007). The amygdala. Current Biology, 17, R868R874.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1994). Emotion, memory and the brain. Scientific American, 270, 5057.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.CrossRefGoogle ScholarPubMed
Lembke, A., & Ketter, T. A. (2002). Impaired recognition of facial emotion in mania. American Journal of Psychiatry, 159, 302304.CrossRefGoogle ScholarPubMed
Machado, C. J., Snyder, A. Z., Cherry, S. R., Lavenex, P., & Amaral, D. G. (2008). Effects of neonatal amygdala or hippocampus lesions on resting brain metabolism in the macaque monkey: A microPET imaging study. NeuroImage, 39, 832846.CrossRefGoogle ScholarPubMed
MacMillan, S., Szeszko, P. R., Moore, G. J., Madden, R., Lorch, E., Ivey, J., et al. (2003). Increased amygdala: Hippocampal volume ratios associated with severity of anxiety in pediatric major depression. Journal of Child and Adolescent Psychopharmacology, 13, 6573.CrossRefGoogle ScholarPubMed
McClure, E. B., Adler, A., Monk, C. S., Cameron, J., Smith, S., Nelson, E. E., et al. (2007). fMRI predictors of treatment outcome in pediatric anxiety disorders. Psychopharmacology (Berlin), 191, 97105.CrossRefGoogle ScholarPubMed
McClure, E. B., Pope, K., Hoberman, A. J., Pine, D. S., & Leibenluft, E. (2003). Facial expression recognition in adolescents with mood and anxiety disorders. American Journal of Psychiatry, 160, 11721174.CrossRefGoogle ScholarPubMed
McClure, E. B., Treland, J. E., Snow, J., Schmajuk, M., Dickstein, D. P., Towbin, K. E., et al. (2005). Deficits in social cognition and response flexibility in pediatric bipolar disorder. American Journal of Psychiatry, 162, 16441651.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2000). Memory—A century of consolidation. Science, 287, 248251.CrossRefGoogle ScholarPubMed
Medina, J. F., Repa, J. C., Mauk, M. D., & LeDoux, J. E. (2002). Parallels between cerebellum- and amygdala-dependent conditioning. Nature Reviews. Neuroscience, 3, 122131.CrossRefGoogle ScholarPubMed
Meunier, M., Bachevalier, J., Murray, E. A., Malkova, L., & Mishkin, M. (1999). Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. European Journal of Neuroscience, 11, 44034418.CrossRefGoogle ScholarPubMed
Milham, M. P., Nugent, A. C., Drevets, W. C., Dickstein, D. P., Leibenluft, E., Ernst, M., et al. (2005). Selective reduction in amygdala volume in pediatric anxiety disorders: A voxel-based morphometry investigation. Biological Psychiatry, 57, 961966.CrossRefGoogle ScholarPubMed
Monk, C. S., Grillon, C., Baas, J. M., McClure, E. B., Nelson, E. E., Zarahn, E., et al. (2003). A neuroimaging method for the study of threat in adolescents. Development and Psychobiology, 43, 359366.CrossRefGoogle Scholar
Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M., et al. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of General Psychiatry, 65, 568576.CrossRefGoogle ScholarPubMed
Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G., & Manji, H. K. (2000). Lithium-induced increase in human brain grey matter. Lancet, 356, 12411242.CrossRefGoogle ScholarPubMed
Nithianantharajah, J., & Murphy, M. (2008). Auditory specific fear conditioning results in increased levels of synaptophysin in the basolateral amygdala. Neurobiology of Learning and Memory, 90, 3643.CrossRefGoogle ScholarPubMed
Pavuluri, M. N., O'Connor, M. M., Harral, E., & Sweeney, J. A. (2007). Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biological Psychiatry, 62, 158167.CrossRefGoogle ScholarPubMed
Pavuluri, M. N., O'Connor, M. M., Harral, E. M., & Sweeney, J. A. (2008). An fMRI study of the interface between affective and cognitive neural circuitry in pediatric bipolar disorder. Psychiatry Research, 162, 244255.CrossRefGoogle ScholarPubMed
Pearlson, G. D., Barta, P. E., Powers, R. E., Menon, R. R., Richards, S. S., Aylward, E. H. et al. (1997). Ziskind–Somerfeld Research Award 1996. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biological Psychiatry, 41, 114.CrossRefGoogle ScholarPubMed
Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 2753.CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187.CrossRefGoogle ScholarPubMed
Pine, D. S. (2007). Research review: A neuroscience framework for pediatric anxiety disorders. Journal of Child Psychology and Psychiatry, 48, 631648.CrossRefGoogle ScholarPubMed
Plessen, K. J., Bansal, R., Zhu, H., Whiteman, R., Amat, J., Quackenbush, G. A., et al. (2006). Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63, 795807.CrossRefGoogle ScholarPubMed
Post, R. M. (1992). Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. American Journal of Psychiatry, 149, 9991010.Google ScholarPubMed
Post, R. M., & Leverich, G. S. (2006). The role of psychosocial stress in the onset and progression of bipolar disorder and its comorbidities: The need for earlier and alternative modes of therapeutic intervention. Development and Psychopathology, 18, 11811211.CrossRefGoogle ScholarPubMed
Post, R. M., Leverich, G. S., Xing, G., & Weiss, R. B. (2001). Developmental vulnerabilities to the onset and course of bipolar disorder. Development and Psychopathology, 13, 581598.CrossRefGoogle Scholar
Radwanska, K., Nikolaev, E., Knapska, E., & Kaczmarek, L. (2002). Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. NeuroReport, 13, 22412246.CrossRefGoogle ScholarPubMed
Rauch, S. L., Shin, L. M., & Wright, C. I. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Annals of the New York Academy of Science, 985, 389410.CrossRefGoogle ScholarPubMed
Rich, B. A., Vinton, D. T., Roberson-Nay, R., Hommer, R. E., Berghorst, L. H., McClure, E. B., et al. (2006). Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. Proceedings of the National Academy of Science of the United States of America, 103, 89008905.CrossRefGoogle ScholarPubMed
Roozendaal, B., Barsegyan, A., & Lee, S. (2008). Adrenal stress hormones, amygdala activation, and memory for emotionally arousing experiences. Progress in Brain Research, 167, 7997.CrossRefGoogle ScholarPubMed
Roozendaal, B., Brunson, K. L., Holloway, B. L., McGaugh, J. L., & Baram, T. Z. (2002). Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proceedings of the National Academy of Science of the United States of America, 99, 1390813913.CrossRefGoogle ScholarPubMed
Rosso, I. M., Killgore, W. D., Cintron, C. M., Gruber, S. A., Tohen, M., & Yurgelun-Todd, D. A. (2007). Reduced amygdala volumes in first-episode bipolar disorder and correlation with cerebral white matter. Biological Psychiatry, 61, 743749.CrossRefGoogle ScholarPubMed
Schneider, F., Grodd, W., Weiss, U., Klose, U., Mayer, K. R., Nagele, T., et al. (1997). Functional MRI reveals left amygdala activation during emotion. Psychiatry Research, 76, 7582.CrossRefGoogle ScholarPubMed
Shekhar, A., Truitt, W., Rainnie, D., & Sajdyk, T. (2005). Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress, 8, 209219.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Gado, M. H., & Price, J. L. (1998). Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport, 9, 20232028.CrossRefGoogle ScholarPubMed
Siegle, G. J., Konecky, R. O., Thase, M. E., & Carter, C. S. (2003). Relationships between amygdala volume and activity during emotional information processing tasks in depressed and never-depressed individuals: An fMRI investigation. Annals of the New York Academy of Science, 985, 481484.CrossRefGoogle ScholarPubMed
Silbersweig, D., Clarkin, J. F., Goldstein, M., Kernberg, O. F., Tuescher, O., Levy, K. N., et al. (2007). Failure of frontolimbic inhibitory function in the context of negative emotion in borderline personality disorder. American Journal of Psychiatry, 164, 18321841.CrossRefGoogle ScholarPubMed
Smith, M. E. (2005). Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: A meta-analysis of structural MRI studies. Hippocampus, 15, 798807.CrossRefGoogle ScholarPubMed
Somerville, L. H., Wig, G. S., Whalen, P. J., & Kelley, W. M. (2006). Dissociable medial temporal lobe contributions to social memory. Journal of Cognitive Neuroscience, 18, 12531265.CrossRefGoogle ScholarPubMed
Sommer, M., Dohnel, K., Meinhardt, J., & Hajak, G. (2008). Decoding of affective facial expressions in the context of emotional situations. Neuropsychologia.CrossRefGoogle ScholarPubMed
Stein, D. J., Westenberg, H. G., & Liebowitz, M. R. (2002). Social anxiety disorder and generalized anxiety disorder: Serotonergic and dopaminergic neurocircuitry. Journal of Clinical Psychiatry, 63(Suppl. 6), 1219.Google ScholarPubMed
Strakowski, S. M., DelBello, M. P., Sax, K. W., Zimmerman, M. E., Shear, P. K., Hawkins, J. M. et al. (1999). Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Archives of General Psychiatry, 56, 254260.CrossRefGoogle ScholarPubMed
Strakowski, S. M., DelBello, M. P., Zimmerman, M. E., Getz, G. E., Mills, N. P., Ret, J., et al. (2002). Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. American Journal of Psychiatry, 159, 18411847.CrossRefGoogle ScholarPubMed
Surguladze, S., Brammer, M. J., Keedwell, P., Giampietro, V., Young, A. W., Travis, M. J., et al. (2005). A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biological Psychiatry, 57, 201209.CrossRefGoogle ScholarPubMed
Swayze, V. W. 2nd, Andreasen, N. C., Alliger, R. J., Yuh, W. T., & Ehrhardt, J. C. (1992). Subcortical and temporal structures in affective disorder and schizophrenia: A magnetic resonance imaging study. Biological Psychiatry, 31, 221240.CrossRefGoogle ScholarPubMed
Thomas, K. M., Drevets, W. C., Dahl, R. E., Ryan, N. D., Birmaher, B., Eccard, C. H., et al. (2001). Amygdala response to fearful faces in anxious and depressed children. Archives of General Psychiatry, 58, 10571063.CrossRefGoogle ScholarPubMed
Warner-Schmidt, J. L., & Duman, R. S. (2006). Hippocampal neurogenesis: Opposing effects of stress and antidepressant treatment. Hippocampus, 16, 239249.CrossRefGoogle ScholarPubMed
Whalen, P. J., Johnstone, T., Somerville, L. H., Nitschke, J. B., Polis, S., Alexander, A. L., et al. (2008). A functional magnetic resonance imaging predictor of treatment response to venlafaxine in generalized anxiety disorder. Biological Psychiatry, 63, 858863.CrossRefGoogle ScholarPubMed
Whittle, S., Allen, N. B., Lubman, D. I., & Yucel, M. (2006). The neurobiological basis of temperament: Towards a better understanding of psychopathology. Neuroscience and Biobehavioral Review, 30, 511525.CrossRefGoogle ScholarPubMed
Yang, T. T., Menon, V., Reid, A. J., Gotlib, I. H., & Reiss, A. L. (2003). Amygdalar activation associated with happy facial expressions in adolescents: A 3-T functional MRI study. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 979985.CrossRefGoogle ScholarPubMed
Yurgelun-Todd, D. A., Gruber, S. A., Kanayama, G., Killgore, W. D., Baird, A. A., & Young, A. D. (2000). fMRI during affect discrimination in bipolar affective disorder. Bipolar Disorders, 2(Pt. 2), 237248.CrossRefGoogle ScholarPubMed