Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T20:57:43.190Z Has data issue: false hasContentIssue false

Hippocampal volume and sensitivity to maternal aggressive behavior: A prospective study of adolescent depressive symptoms

Published online by Cambridge University Press:  24 January 2011

Sarah Whittle
Affiliation:
University of Melbourne
Marie B. H. Yap
Affiliation:
University of Melbourne
Lisa Sheeber
Affiliation:
Oregon Research Institute
Paul Dudgeon
Affiliation:
University of Melbourne
Murat Yücel
Affiliation:
University of Melbourne
Christos Pantelis
Affiliation:
University of Melbourne
Julian G. Simmons
Affiliation:
University of Melbourne
Nicholas B. Allen*
Affiliation:
University of Melbourne
*
Address correspondence and reprint requests to: Nicholas B. Allen, Orygen Youth Health Research Centre and Department of Psychological Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; E-mail: [email protected].

Abstract

It has been suggested that biological factors confer increased sensitivity to environmental influences on depressive symptoms during adolescence, a crucial time for the onset of depressive disorders. Given the critical role of the hippocampus in sensitivity to stress and processing of contextual aspects of the environment, investigation of its role in determining sensitivity to environmental context seems warranted. This study prospectively examined hippocampal volume as a measure of sensitivity to the influence of aggressive maternal behavior on change in depressive symptoms from early to midadolescence. The interaction between aggressive maternal behavior and hippocampal volume was found to predict change in depressive symptoms. Significant sex differences also emerged, whereby only for girls were larger bilateral hippocampal volumes more sensitive to the effects of maternal aggressive behavior, particularly with respect to experiencing the protective effects of low levels of maternal aggressiveness. These findings help elucidate the complex relationships between brain structure, environmental factors such as maternal parenting style, and sensitivity to (i.e., risk for, and protection from) the emergence of depression during this life stage. Given that family context risk factors are modifiable, our findings suggest the potential utility of targeted parenting interventions for the prevention and treatment of adolescent depressive disorder.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. London: Sage.Google Scholar
Allen, N. B., & Sheeber, L. B. (2008). Towards a developmental psychopathology of adolescent onset depression: Implications for research and intervention. In Allen, N. B. & Sheeber, L. (Eds.), Adolescent emotional development and the emergence of depressive disorders. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Andersen, S. L. (2003). Trajectories of brain development: Point of vulnerability or window of opportunity? Neuroscience and Biobehavioral Reviews, 27, 318.CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31, 183191.CrossRefGoogle ScholarPubMed
Aron, E. N., & Aron, A. (1997). Sensory-processing sensitivity and its relation to introversion and emotionality. Journal of Personality and Social Psychology, 73, 345368.CrossRefGoogle ScholarPubMed
Aron, E. N., Aron, A., & Davies, K. M. (2005). Adult shyness: The interaction of temperamental sensitivity and an adverse childhood environment. Personality and Social Psychology Bulletin, 31, 181197.CrossRefGoogle Scholar
Asarnow, J. R., Goldstein, M. J., Tompson, M., & Guthrie, D. (1993). One-year outcomes of depressive disorders in child psychiatric in-patients: Evaluation of the prognostic power of a brief measure of expressed emotion. Journal of Child Psychology and Psychiatry and Allied Disciplines, 34, 129137.CrossRefGoogle ScholarPubMed
Asarnow, J. R., Tompson, M., Woo, S., & Cantwell, D. P. (2001). Is expressed emotion a specific risk factor for depression or a nonspecific correlate for psychopathology? Journal of Abnormal Child Psychology, 29, 573583.CrossRefGoogle ScholarPubMed
Bagot, R. C., van Hasselt, F. N., Champagne, D. L., Meaney, M. J., Krugers, H. J., & Joels, M. (2009). Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiology of Learning and Memory, 92, 292300.CrossRefGoogle ScholarPubMed
Bannerman, D. M., Rawlins, J. N. P., McHugh, S. B., Deacon, R. M. J., Yee, B. K., Bast, T., et al. (2004). Regional dissociations within the hippocampus—Memory and anxiety. Neuroscience and Biobehavioral Reviews, 28, 273283.CrossRefGoogle ScholarPubMed
Barros-Loscertales, A., Meseguer, V., Sanjuan, A., Belloch, V., Parcet, M. A., Torrubia, R., et al. (2006). Behavioral inhibition system activity is associated with increased amygdala and hippocampal gray matter volume: A voxel-based morphometry study. NeuroImage, 33, 10111015.CrossRefGoogle ScholarPubMed
Beck, A. T., & Steer, R. A. (1993). Beck Anxiety Inventory manual. San Antonio, TX: Psychological Corporation.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (in press). Beyond diathesis–stress: Differential susceptibility to environmental influences. Psychological Bulletin.Google Scholar
Benes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal-formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51, 477484.CrossRefGoogle ScholarPubMed
Bergstrom, A., Jayatissa, M. N., Thykjaer, T., & Wiborg, O. (2007). Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression—A gene expression study. Journal of Molecular Neuroscience, 33, 201215.CrossRefGoogle ScholarPubMed
Birmaher, B., Brent, D. A., Kolko, D., Baugher, M., Bridge, J., & Holder, D. (2000). Clinical outcome after short-term psychotherapy for adolescents with major depressive disorder. Archives of General Psychiatry, 57, 2936.CrossRefGoogle ScholarPubMed
Birmaher, B., Ryan, N. D., Williamson, D. E., Brent, D. A., Kaufman, J., Dahl, R. E., et al. (1996). Childhood and adolescent depression: A review of the past 10 years. 1. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 14271439.CrossRefGoogle Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Nazeer, A., et al. (2003). MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. American Journal of Psychiatry, 160, 924932.CrossRefGoogle ScholarPubMed
Brunson, K. L., Kramar, E., Lin, B., Chen, Y. C., Colgin, L. L., Yanagihara, T. K., et al. (2005). Mechanisms of late-onset cognitive decline after early-life stress. Journal of Neuroscience, 25, 93289338.CrossRefGoogle ScholarPubMed
Buchanan, T. W., Tranel, D., & Kirschbaum, C. (2009). Hippocampal damage abolishes the cortisol response to psychosocial stress in humans. Hormones and Behavior, 56, 4450.CrossRefGoogle ScholarPubMed
Cadoret, R. J., Winokur, G., Langbehn, D., Troughton, E., Yates, W., & Stewart, M. (1996). Depression spectrum disease: The role of gene–environment interaction. American Journal of Psychiatry, 153, 892899.Google ScholarPubMed
Caspi, A., & Moffitt, T. E. (2006). Gene–environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583590.CrossRefGoogle ScholarPubMed
Cherbuin, N., Windsor, T. D., Anstey, K. J., Maller, J. J., Meslin, C., & Sachdev, P. S. (2008). Hippocampal volume is positively associated with behavioural inhibition (Bis) in a large community-based sample of mid-life adults: The path through life study. Social Cognitive and Affective Neuroscience, 3, 262269.CrossRefGoogle Scholar
Compas, B. E., Grant, K. E., & Ey, S. (1994). Psychosocial stress and child/adolescent depression: Can we be more specific? In Reynolds, W. M. & Johnston, H. (Eds.), Handbook of depression in children and adolescents (pp. 509523). New York: Plenum Press.CrossRefGoogle Scholar
Cummings, E. M., El-Sheikh, M., Kouros, C. D., & Keller, P. S. (2007). Children's skin conductance reactivity as a mechanism of risk in the context of parental depressive symptoms. Journal of Child Psychology and Psychiatry, 48, 436445.CrossRefGoogle ScholarPubMed
Davey, C. G., Yucel, M., & Allen, N. B. (2008). The emergence of depression in adolescence: Development of the prefrontal cortex and the representation of reward. Neuroscience and Biobehavioral Reviews, 32, 119.CrossRefGoogle ScholarPubMed
Dekker, M. C., Ferdinand, R. F., van Lang, N. D. J., Bongers, I. L., van der Ende, J. D., & Verhulst, F. C. (2007). Developmental trajectories of depressive symptoms from early childhood to late adolescence: Gender differences and adult outcome. Journal of Child Psychology and Psychiatry, 48, 657666.CrossRefGoogle ScholarPubMed
Drevets, W. C. (2001). Neuroimaging and neuropathological studies of depression: Implications for the cognitive–emotional features of mood disorders. Current Opinion in Neurobiology, 11, 240249.CrossRefGoogle ScholarPubMed
Ellis, L. K., & Rothbart, M. K. (2001). Revision of the early adolescent temperament questionnaire. Paper presented at the 2001 Biennial Meeting of the Society for Research in Child Development, Minneapolis, MN.Google Scholar
El-Sheikh, M. (2005). Stability of respiratory sinus arrhythmia in children and young adolescents: A longitudinal examination. Developmental Psychobiology, 46, 6674.CrossRefGoogle Scholar
Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.Google Scholar
Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2007). Recurrence of major depression in adolescence and early adulthood, and later mental health, educational and economic outcomes. British Journal of Psychiatry, 191, 335342.CrossRefGoogle ScholarPubMed
Fleiss, J. L. (1981). Statistical methods for rates and proportions. New York: Wiley.Google Scholar
Friedrich, R. J. (1982). In defense of multiplicative terms in multiple regression equations. American Journal of Political Science, 26, 797833.CrossRefGoogle Scholar
Frodl, T., Koutsouleris, N., Bottlender, R., Born, C., Jager, M., Morgenthaler, M., et al. (2008). Reduced gray matter brain volumes are associated with variants of the serotonin transporter gene in major depression. Molecular Psychiatry, 13, 10931101.CrossRefGoogle ScholarPubMed
Garber, J., Robinson, N. S., & Valentiner, D. (1997). The relation between parenting and adolescent depression: Self-worth as a mediator. Journal of Adolescent Research, 12, 1233.CrossRefGoogle Scholar
Ge, X., Conger, R. D., Lorenz, F. O., & Simons, R. L. (1994). Parents' stressful life events and adolescent depressed mood. Journal of Health and Social Behavior, 35, 2844.CrossRefGoogle ScholarPubMed
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 11851201.CrossRefGoogle ScholarPubMed
Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4–18 years. Journal of Comparative Neurology, 366, 223230.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Gotlib, I. H., Lewinsohn, P. M., & Seeley, J. R. (1995). Symptoms versus a diagnosis of depression—Differences in psychosocial functioning. Journal of Consulting and Clinical Psychology, 63, 90100.CrossRefGoogle ScholarPubMed
Gould, E., Woolley, C. S., Frankfurt, M., & McEwen, B. S. (1990). Gonadal-steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. Journal of Neuroscience, 10, 12861291.CrossRefGoogle ScholarPubMed
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549576.CrossRefGoogle ScholarPubMed
Gray, J. A. (1982). The neuropsychology of anxiety (1st ed.). Oxford: Oxford University Press.Google Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety (2nd ed.). Oxford: Oxford University Press.Google Scholar
Harrington, R., & Vostanis, P. (1995). Longitudinal perspectives and affective disorder in children and adolescents. In Goodyer, I. M. (Ed.), The depressed child and adolescent: Developmental and clinical perspectives (pp. 311342). New York: Cambridge University Press.Google Scholar
Herring, M., & Kaslow, N. J. (2002). Depression and attachment in families: A child-focused perspective. Family Process, 41, 494518.CrossRefGoogle ScholarPubMed
Holland, P. C., & Bouton, M. E. (1999). Hippocampus and context in classical conditioning. Current Opinion in Neurobiology, 9, 195202.CrossRefGoogle ScholarPubMed
Hops, H., Davis, B., & Longoria, N. (1995). Methodological issues in direct observation—Illustrations with the living in familial environments (life) coding system. Journal of Clinical Child Psychology, 24, 193203.CrossRefGoogle Scholar
Hops, H., Lewinsohn, P. M., Andrews, J. A., & Roberts, R. E. (1990). Psychosocial correlates of depressive symptomatology among high-school-students. Journal of Clinical Child Psychology, 19, 211220.CrossRefGoogle Scholar
Ito, R., Everitt, B. J., & Robbins, T. W. (2005). The hippocampus and appetitive Pavlovian conditioning: Effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus, 15, 713721.CrossRefGoogle ScholarPubMed
Jack, C. R., Twomey, C. K., Zinsmeister, A. R., Sharborough, F. W., Petersen, R., & Cascino, G. D. (1989). Anterior temporal lobes and hippocampal formations: Normative volumetric measurements from MR images in young Adults. Radiology, 172, 549554.CrossRefGoogle ScholarPubMed
Jacobvitz, D., Hazen, N., Curran, M., & Hitchens, K. (2004). Observations of early triadic family interactions: Boundary disturbances in the family predict symptoms of depression, anxiety, and attention-deficit/hyperactivity disorder in middle childhood. Development and Psychopathology, 16, 577592.CrossRefGoogle ScholarPubMed
Jenkinson, M., & Smith, S. M. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5, 143156.CrossRefGoogle ScholarPubMed
Katz, L. F., & Hunter, E. C. (2007). Maternal meta-emotion philosophy and adolescent depressive symptomatology. Social Development, 16, 343360.CrossRefGoogle Scholar
Leuner, B., & Gould, E. (2010). Structural plasticity and hippocampal function. Annual Review of Psychology, 61, 111140.CrossRefGoogle ScholarPubMed
Lewinsohn, P. M., Hops, H., Roberts, R. E., Seeley, J. R., & Andrews, J. A. (1993). Adolescent psychopathology 1: Prevalence and incidence of depression and other DSM-III-R disorders in high-school students. Journal of Abnormal Psychology, 102, 133144.CrossRefGoogle ScholarPubMed
Lewinsohn, P. M., Rohde, P., & Seeley, J. R. (1998). Major depressive disorder in older adolescents: Prevalence, risk factors, and clinical implications. Clinical Psychology Review, 18, 765794.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
MacMaster, F. P., & Kusumakar, V. (2004). Hippocampal volume in early onset depression. BMC Medicine, 2, 19571966.CrossRefGoogle ScholarPubMed
MacMaster, F. P., Mirza, Y., Szeszko, P. R., Kmiecik, L. E., Easter, P. C., Taormina, S. P., et al. (2008). Amygdala and hippocampal volumes in familial early onset major depressive disorder. Biological Psychiatry, 63, 385390.CrossRefGoogle ScholarPubMed
MacMillan, S., Szeszko, P. R., Moore, G. J., Madden, R., Lorch, E., Ivey, J., et al. (2003). Increased amygdala: Hippocampal volume ratios associated with severity of anxiety in pediatric major depression. Journal of Child and Adolescent Psychopharmacology, 13, 6573.CrossRefGoogle ScholarPubMed
Marais, L., Van Rensburg, S. J., Van Zyl, J. M., Stein, D. J., & Daniels, W. M. U. (2008). Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neuroscience Research, 61, 106112.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22, 105122.CrossRefGoogle ScholarPubMed
McKinnon, M. C., Yucel, K., Nazarov, A., & MacQueen, G. M. (2009). A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. Journal of Psychiatry & Neuroscience, 34, 4154.Google ScholarPubMed
Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 62, 473481.CrossRefGoogle ScholarPubMed
Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35, 163174.CrossRefGoogle ScholarPubMed
Obradovic, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31, 300308.CrossRefGoogle ScholarPubMed
Obradovic, J., Bush, N. R., Stemperdahl, J., Adler, N. E., & Boyce, W. T. (in press). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socio-emotional behavior and school readiness. Child Development.Google Scholar
Orvaschel, H., & Puig-Antich, J. (1994). Schedule for Affective Disorders and Schizophrenia for School-Age Children: Epidemiologic version. Unpublished manuscript.Google Scholar
Park, I. J. K., Garber, J., Ciesla, J. A., & Ellis, B. J. (2008). Convergence among multiple methods of measuring positivity and negativity in the family environment: Relation to depression in mothers and their children. Journal of Family Psychology, 22, 123134.CrossRefGoogle Scholar
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9, 6068.CrossRefGoogle ScholarPubMed
Pavlidis, K., & McCauley, E. (2001). Autonomy and relatedness in family interactions with depressed adolescents. Journal of Abnormal Child Psychology, 29, 1121.CrossRefGoogle ScholarPubMed
Paz-Alonso, P. M., Ghetti, S., Donohue, S. E., Goodman, G. S., & Bunge, S. A. (2008). Neurodevelopmental correlates of true and false recognition. Cerebral Cortex, 18, 22082216.CrossRefGoogle ScholarPubMed
Peper, J. S., Brouwer, R. M., Boomsma, D. I., Kahn, R. S., & Poll, H. E. H. (2007). Genetic influences on human brain structure: A review of brain imaging studies in twins. Human Brain Mapping, 28, 464473.CrossRefGoogle ScholarPubMed
Pezze, M. A., Bast, T., & Feldon, J. (2003). Significance of dopamine transmission in the rat medial prefrontal cortex for conditioned fear. Cerebral Cortex, 13, 371380.CrossRefGoogle ScholarPubMed
Phares, V., & Compas, B. E. (1992). The role of fathers in child and adolescent psychopathology: Make room for daddy. Psychological Bulletin, 111, 387412.CrossRefGoogle ScholarPubMed
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. D. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 53, 504514.CrossRefGoogle Scholar
Pine, D. S., Cohen, E., Cohen, P., & Brook, J. (1999). Adolescent depressive symptoms as predictors of adult depression: Moodiness or mood disorder? American Journal of Psychiatry, 156, 133135.CrossRefGoogle ScholarPubMed
Prinz, R. J., Foster, S. L., Kent, R. N., & O'Leary, K. D. (1979). Multivariate assessment of conflict in distressed and nondistressed mother–adolescent dyads. Journal of Applied Behavior Analysis, 12, 691700.CrossRefGoogle ScholarPubMed
Pruessner, M., Pruessner, J. C., Hellhammer, D. H., Pike, G. B., & Lupien, S. J. (2007). The associations among hippocampal volume, cortisol reactivity, and memory performance in healthy young men. Psychiatry Research-Neuroimaging, 155, 110.CrossRefGoogle ScholarPubMed
Putnam, S. P., Ellis, L. K., & Rothbart, M. K. (2001). The structure of temperament from infancy through adolescence. In Eliasz, A. & Angleitner, A. (Eds.), Advances in research on temperament (pp. 165182). Lengerich, Germany: Pabst Science Publishers.Google Scholar
Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Radloff, L. S. (1991). The use of the Center for Epidemiologic Studies Depression Scale in Adolescents and Young Adults. Journal of Youth and Adolescence, 20, 149166.CrossRefGoogle Scholar
Restifo, K., & Bogels, S. (2009). Family processes in the development of youth depression: Translating the evidence to treatment. Clinical Psychology Review, 29, 294316.CrossRefGoogle ScholarPubMed
Rosso, I. M., Cintron, C. M., Steingard, R. J., Renshaw, P. F., Young, A. D., & Yurgelun-Todd, D. A. (2005). Amygdala and hippocampal volumes in pediatric major depression. Biological Psychiatry, 57, 2126.CrossRefGoogle Scholar
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.CrossRefGoogle Scholar
Rudolph, K. D., Hammen, C., Burge, D., Lindberg, N., Herzberg, D., & Daley, S. E. (2000). Toward an interpersonal life-stress model of depression: The developmental context of stress generation. Development and Psychopathology, 12, 215234.CrossRefGoogle ScholarPubMed
Rueter, M. A., Scaramella, L., Wallace, L. E., & Conger, R. D. (1999). First onset of depressive or anxiety disorders predicted by the longitudinal course of internalizing symptoms and parent–adolescent disagreements. Archives of General Psychiatry, 56, 726732.CrossRefGoogle ScholarPubMed
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47, 226261.CrossRefGoogle ScholarPubMed
Sanford, M., Szatmari, P., Spinner, M., Munroe-Blum, H., Jamieson, E., & Walsh, C. (1995). Predicting the one-year course of adolescent major depression. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 1618.Google ScholarPubMed
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177.CrossRefGoogle ScholarPubMed
Shankman, S. A., Lewinsohn, P. M., Klein, D. N., Small, J. W., Seeley, J. R., & Altman, S. E. (2009). Subthreshold conditions as precursors for full syndrome disorders: A 15-year longitudinal study of multiple diagnostic classes. Journal of Child Psychology and Psychiatry, 50, 14851494.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.CrossRefGoogle ScholarPubMed
Sheeber, L., Hops, H., & Davis, B. (2001). Family processes in adolescent depression. Clinical Child and Family Psychology Review, 4, 1935.CrossRefGoogle ScholarPubMed
Sheeber, L., & Sorensen, E. (1998). Family relationships of depressed adolescents: A multimethod assessment. Journal of Clinical Child Psychology, 27, 268277.CrossRefGoogle ScholarPubMed
Sheeber, L. B., Davis, B., Leve, C., Hops, H., & Tildesley, E. (2007). Adolescents' relationships with their mothers and fathers: Associations with depressive disorder and subdiagnostic symptomatology. Journal of Abnormal Psychology, 116, 144154.CrossRefGoogle ScholarPubMed
Shumake, J., Barrett, D., & Gonzalez-Lima, F. (2005). Behavioral characteristics of rats predisposed to learned helplessness: Reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behavioural Brain Research, 164, 222230.CrossRefGoogle ScholarPubMed
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143155.CrossRefGoogle ScholarPubMed
StataCorp. (2009). Stata statistical software: Release 11.0 [Computer software]. College Station, TX: StataCorp LP.Google Scholar
Stice, E., Ragan, J., & Randall, P. (2004). Prospective relations between social support and depression: Differential direction of effects for parent and peer support? Journal of Abnormal Psychology, 113, 155159.CrossRefGoogle ScholarPubMed
Suzuki, M., Hagino, H., Nohara, S., Zhou, S. Y., Kawasaki, Y., Takahashi, T., et al. (2005). Male-specific volume expansion of the human hippocampus during adolescence. Cerebral Cortex, 15, 187193.CrossRefGoogle ScholarPubMed
Sweeney, J. A., Kmiec, J. A., & Kupfer, D. J. (2000). Neuropsychologic impairments in bipolar and unipolar mood disorders on the Cantab neurocognitive nattery. Biological Psychiatry, 48, 674684.CrossRefGoogle Scholar
Tanapat, P., Hastings, N. B., Reeves, A. J., & Gould, E. (1999). Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. Journal of Neuroscience, 19, 57925801.CrossRefGoogle ScholarPubMed
Tottenham, N., & Sheridan, M. A. (2010). A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing. Frontiers in Human Neuroscience, 3, 18.Google ScholarPubMed
Tupler, L. A., & De Bellis, M. D. (2006). Segmented hippocampal volume in children and adolescents with posttraumatic stress disorder. Biological Psychiatry, 59, 523529.CrossRefGoogle ScholarPubMed
Vakili, K., Pillay, S. S., Lafer, B., Fava, M., Renshaw, P. F., Bondello-Cintron, C. M., et al. (2000). Hippocampal volume in primary unipolar major depression: A magnetic resonance imaging study. Biological Psychiatry, 47, 10871090.CrossRefGoogle ScholarPubMed
Vazsonyi, A. T., & Belliston, L. M. (2006). The cultural and developmental significance of parenting processes in adolescent anxiety and depression symptoms. Journal of Youth and Adolescence, 35, 491505.CrossRefGoogle Scholar
Velakoulis, D., Pantelis, C., McGorry, P. D., Dudgeon, P., Brewer, W., Cook, M., et al. (1999). Hippocampal volume in first-episode psychoses and chronic schizophrenia—A high-resolution magnetic resonance imaging study. Archives of General Psychiatry, 56, 133141.CrossRefGoogle ScholarPubMed
Velakoulis, D., Wood, S. J., Wong, M. T. H., McGorry, P. D., Yung, A., Phillips, L., et al. (2006). Hippocampal and amygdala volumes according to psychosis stage and diagnosis—A magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Archives of General Psychiatry, 63, 139149.CrossRefGoogle ScholarPubMed
Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: A meta-analysis of MRI studies. American Journal of Psychiatry, 161, 19571966.CrossRefGoogle ScholarPubMed
Von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265291.CrossRefGoogle Scholar
Watson, C., Andermann, F., Gloor, P., Jonesgotman, M., Peters, T., Evans, A., et al. (1992). Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic-resonance-imaging. Neurology, 42, 17431750.CrossRefGoogle ScholarPubMed
Weissman, M. M., Fendrich, M., Warner, V., & Wickramaratne, P. (1992). Incidence of psychiatric-disorder in offspring at high and low-risk for depression. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 640648.CrossRefGoogle ScholarPubMed
Wilhelm, K., Mitchell, P. B., Niven, H., Finch, A., Wedgwood, L., Scimone, A., et al. (2006). Life events, first depression onset and the serotonin transporter gene. British Journal of Psychiatry, 188, 210215.CrossRefGoogle ScholarPubMed
Woolley, C. S., Wenzel, H. J., & Schwartzkroin, P. A. (1996). Estradiol increases the frequency of multiple synapse boutons in the hippocampal ca1 region of the adult female rat. Journal of Comparative Neurology, 373, 108117.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Yap, M. B. H., Whittle, S., Yücel, M., Sheeber, L., Pantelis, C., Simmons, J. G., et al. (2008). Parenting experiences interact with brain structure to predict depressive symptoms in adolescents. Archives of General Psychiatry, 65, 13771385.CrossRefGoogle ScholarPubMed
Zahn-Waxler, C., Crick, N., Shirtcliff, E. A., & Woods, K. (2006). The origins and development of psychopathology in females and males. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (Vol. 1, pp. 76138). Hoboken, NJ: Wiley.Google Scholar
Zalsman, G., Huang, Y. Y., Oquendo, M. A., Burke, A. K., Hu, X. Z., Brent, D. A., et al. (2006). Association of a triallelic serotonin transporter gene promoter region (5-HTTLPR) polymorphism with stressful life events and severity of depression. American Journal of Psychiatry, 163, 15881593.CrossRefGoogle ScholarPubMed
Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging, 20, 4557.CrossRefGoogle ScholarPubMed
Zobel, A., Jessen, F., von Widdern, O., Schuhmacher, A., Hofels, S., Metten, M., et al. (2008). Unipolar depression and hippocampal volume: Impact of DNA sequence variants of the glucocorticoid receptor gene. American Journal of Medical Genetics, 147B, 836843.Google ScholarPubMed
Zuckerman, M. (1999). Vulnerability to psychopathology. Washington, DC: American Psychological Association.Google Scholar