Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T12:37:54.413Z Has data issue: false hasContentIssue false

Heart rate variability moderates the effects of COVID-19-related stress and family adversity on emotional problems in adolescents: Testing models of differential susceptibility and diathesis stress

Published online by Cambridge University Press:  08 June 2021

Jonas G. Miller*
Affiliation:
Department of Psychology, Stanford University, Stanford, USA
Rajpreet Chahal
Affiliation:
Department of Psychology, Stanford University, Stanford, USA
Jaclyn S. Kirshenbaum
Affiliation:
Department of Psychology, Stanford University, Stanford, USA
Tiffany C. Ho
Affiliation:
Department of Psychology, Stanford University, Stanford, USA Department of Psychiatry, University of California, San Francisco, USA
Anthony J. Gifuni
Affiliation:
Department of Psychology, Stanford University, Stanford, USA Department of Psychiatry, McGill University, Montreal, Canada
Ian H. Gotlib
Affiliation:
Department of Psychology, Stanford University, Stanford, USA
*
Author for Correspondence: Jonas G. Miller, Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305; E-mail: [email protected]

Abstract

The COVID-19 pandemic is a unique period of stress, uncertainty, and adversity that will have significant implications for adolescent mental health. Nevertheless, stress and adversity related to COVID-19 may be more consequential for some adolescents’ mental health than for others. We examined whether heart rate variability (HRV) indicated differential susceptibility to mental health difficulties associated with COVID-19 stress and COVID-19 family adversity. Approximately 4 years prior to the pandemic, we assessed resting HRV and HRV reactivity to a well-validated stress paradigm in 87 adolescents. During the pandemic, these adolescents (ages 13–19) reported on their health-related stress and concerns about COVID-19, family adversity related to COVID-19, and their recent emotional problems. The association between COVID-19 stress and emotional problems was significantly stronger for adolescents who previously exhibited higher resting HRV or higher HRV reactivity. For adolescents who exhibited lower resting HRV or HRV augmentation, COVID-19 stress was not associated with emotional problems. Conversely, lower resting HRV indicated vulnerability to the effect of COVID-19 family adversity on emotional problems. Different patterns of parasympathetic functioning may reflect differential susceptibility to the effects of COVID-19 stress versus vulnerability to the effects of COVID-19 family adversity on mental health during the pandemic.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abaied, J. L., Stanger, S. B., Wagner, C., Sanders, W., Dyer, W. J., & Padilla-Walker, L. (2018). Parasympathetic and sympathetic reactivity moderate maternal contributions to emotional adjustment in adolescence. Developmental Psychology, 54, 16611673. doi: 10.1037/dev0000507CrossRefGoogle ScholarPubMed
Achenbach, T M. (1991). Integrative guide to the 1991 CBCL 4-18, YSR, and TRF profiles. Burlington, VT: University of Vermont.Google Scholar
Alkon, A., Boyce, W. T., Davis, N. V., & Eskenazi, B. (2011). Developmental changes in autonomic nervous system resting and reactivity measures in Latino children from 6 to 60 months of age. Journal of Developmental & Behavioral Pediatrics, 32, 668677. doi: 10.1097/DBP.0b013e3182331fa6CrossRefGoogle ScholarPubMed
Baldwin, J. R., Reuben, A., Newbury, J. B., & Danese, A. (2019). Agreement between prospective and retrospective measures of childhood maltreatment: A systematic review and meta-analysis. JAMA Psychiatry, 76, 584593. doi: 10.1001/jamapsychiatry.2019.0097CrossRefGoogle ScholarPubMed
Beauchaine, T. (2001). Vagal tone, development, and gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214. doi: 10.1017/s0954579401002012CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2015). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 4347. doi: 10.1016/j.copsyc.2015.01.017CrossRefGoogle ScholarPubMed
Beaunoyer, E., Dupéré, S., & Guitton, M. J. (2020). COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Computers in Human Behavior, 111, 106424. doi: 10.1016/j.chb.2020.106424CrossRefGoogle ScholarPubMed
Belsky, J. (2016). The differential susceptibility hypothesis: Sensitivity to the environment for better and for worse. JAMA Pediatrics, 170, 321322. doi: 10.1001/jamapediatrics.2015.4263CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. doi: 10.1037/a0017376CrossRefGoogle ScholarPubMed
Blechert, J., Peyk, P., Liedlgruber, M., & Wilhelm, F. H. (2016). ANSLAB: Integrated multichannel peripheral biosignal processing in psychophysiological science. Behavior Research Methods, 48, 15281545. doi: 10.3758/s13428-015-0665-1CrossRefGoogle ScholarPubMed
Boyce, W. T. (2016). Differential susceptibility of the developing brain to contextual adversity and stress. Neuropsychopharmacology, 41, 142162. doi: 10.1038/npp.2015.294CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301. doi: 10.1017/S0954579405050145CrossRefGoogle ScholarPubMed
Cai, T., & Tu, K. M. (2020). Linking parental monitoring and psychological control with internalizing symptoms in early adolescence: The moderating role of vagal tone. Journal of Abnormal Child Psychology, 48, 809821. doi: 10.1007/s10802-020-00631-wCrossRefGoogle ScholarPubMed
Calkins, S. D., & Fox, N. A. (2002). Self-regulatory processes in early personality development: A multilevel approach to the study of childhood social withdrawal and aggression. Development and Psychopathology, 14, 477498. doi: 10.1017/s095457940200305xCrossRefGoogle Scholar
Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool period: Stability, continuity, and implications for childhood adjustment. Developmental Psychobiology, 45, 101112. doi: 10.1002/dev.20020CrossRefGoogle ScholarPubMed
Chahal, R., Kirshenbaum, J. S., Miller, J. G., Ho, T. C., & Gotlib, I. H. (2021). Higher executive control network coherence buffers against puberty-related increases in internalizing symptoms during the COVID-19 pandemic. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 7988. doi: 10.1016/j.bpsc.2020.08.010.Google ScholarPubMed
Conradt, E., Measelle, J., & Ablow, J. C. (2013). Poverty, problem behavior, and promise: Differential susceptibility among infants reared in poverty. Psychological Science, 24, 235242. doi: 10.1177/0956797612457381CrossRefGoogle ScholarPubMed
Deane, C., Vijayakumar, N., Allen, N. B., Schwartz, O., Simmons, J. G., Bousman, C. A., … Whittle, S. (2020). Parenting × brain development interactions as predictors of adolescent depressive symptoms and well-being: Differential susceptibility or diathesis-stress? Development and Psychopathology, 32, 139150. doi: 10.1017/S0954579418001475CrossRefGoogle ScholarPubMed
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592. doi: 10.1016/j.neubiorev.2010.11.007CrossRefGoogle ScholarPubMed
Diamond, L. M., Fagundes, C. P., & Cribbet, M. R. (2012). Individual differences in adolescents’ sympathetic and parasympathetic functioning moderate associations between family environment and psychosocial adjustment. Developmental Psychology, 48, 918931. doi: 10.1037/a0026901CrossRefGoogle ScholarPubMed
Dollar, J. M., Calkins, S. D., Berry, N. T., Perry, N. B., Keane, S. P., Shanahan, L., & Wideman, L. (2020). Developmental patterns of respiratory sinus arrhythmia from toddlerhood to adolescence. Developmental Psychology, 56, 783794. doi: 10.1037/dev0000894CrossRefGoogle ScholarPubMed
Dorn, L. D., Dahl, R. E., Woodward, H. R., & Biro, F. (2006). Defining the boundaries of early adolescence: A user's guide to assessing pubertal status and pubertal timing in research with adolescents. Applied Developmental Science, 10, 3056. doi: 10.1207/s1532480xads1001_3CrossRefGoogle Scholar
Ebesutani, C., Bernstein, A., Martinez, J. I., Chorpita, B. F., & Weisz, J. R. (2011). The youth self report: Applicability and validity across younger and older youths. Journal of Clinical Child & Adolescent Psychology, 40, 338346. doi: 10.1080/15374416.2011.546041CrossRefGoogle ScholarPubMed
Eisenberg, N., Sulik, M. J., Spinrad, T. L., Edwards, A., Eggum, N. D., Liew, J., … Hart, D. (2012). Differential susceptibility and the early development of aggression: Interactive effects of respiratory sinus arrhythmia and environmental quality. Developmental Psychology, 48, 755768. doi: 10.1037/a0026518CrossRefGoogle ScholarPubMed
Eisenlohr-Moul, T. A., Miller, A. B., Giletta, M., Hastings, P. D., Rudolph, K. D., Nock, M. K., & Prinstein, M. J. (2018). HPA axis response and psychosocial stress as interactive predictors of suicidal ideation and behavior in adolescent females: A multilevel diathesis-stress framework. Neuropsychopharmacology, 43, 25642571. doi: 10.1038/s41386-018-0206-6CrossRefGoogle ScholarPubMed
El-Sheikh, M. (2005). Stability of respiratory sinus arrhythmia in children and young adolescents: A longitudinal examination. Developmental Psychobiology, 46, 6674. doi: 10.1002/dev.20036CrossRefGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi: 10.1017/S0954579410000611CrossRefGoogle Scholar
Fortunato, C. K., Gatzke-Kopp, L. M., & Ram, N. (2013). Associations between respiratory sinus arrhythmia reactivity and internalizing and externalizing symptoms are emotion specific. Cognitive, Affective & Behavioral Neuroscience, 13, 238251. doi: 10.3758/s13415-012-0136-4CrossRefGoogle ScholarPubMed
Garfin, D. R., Silver, R. C., & Holman, E. A. (2020). The novel coronavirus (COVID-2019) outbreak: Amplification of public health consequences by media exposure. Health Psychology, 39, 355. doi: 10.1037/hea0000875CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L., & Ram, N. (2018). Developmental dynamics of autonomic function in childhood. Psychophysiology, 55, e13218. doi: 10.1111/psyp.13218CrossRefGoogle ScholarPubMed
Giletta, M., Hastings, P. D., Rudolph, K. D., Bauer, D. J., Nock, M. K., & Prinstein, M. J. (2017). Suicide ideation among high-risk adolescent females: Examining the interplay between parasympathetic regulation and friendship support. Development and Psychopathology, 29, 11611175. doi: 10.1017/S0954579416001218CrossRefGoogle ScholarPubMed
Golberstein, E., Wen, H., & Miller, B. F. (2020). Coronavirus disease 2019 (COVID-19) and mental health for children and adolescents. JAMA Pediatrics, doi: 10.1001/jamapediatrics.2020.1456CrossRefGoogle ScholarPubMed
Graziano, P., & Derefinko, K. (2013). Cardiac vagal control and children's adaptive functioning: A meta-analysis. Biological Psychology, 94, 2237. doi: 10.1016/j.biopsycho.2013.04.011CrossRefGoogle ScholarPubMed
Guyer, A. E. (2020). Adolescent psychopathology: The role of brain-based diatheses, sensitivities, and susceptibilities. Child Development Perspectives, 14, 104109. doi: 10.1111/cdep.12365CrossRefGoogle ScholarPubMed
Hill, L. K., & Siebenbrock, A. (2009). Are all measures created equal? Heart rate variability and respiration - biomed 2009. Biomedical Sciences Instrumentation, 45, 7176.Google ScholarPubMed
Holmes, E. A., O'Connor, R. C., Perry, V. H., Tracey, I., Wessely, S., Arseneault, L., … Bullmore, E. (2020). Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. The Lancet. Psychiatry, 7, 547560. doi: 10.1016/S2215-0366(20)30168-1CrossRefGoogle Scholar
Keller, M. C. (2014). Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824. doi: 10.1016/j.biopsych.2013.09.006CrossRefGoogle Scholar
Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The ‘trier social stress test’ – A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681. doi: 10.1159/000119004CrossRefGoogle Scholar
Kraemer, H. C., & Blasey, C. M. (2004). Centring in regression analyses: A strategy to prevent errors in statistical inference. International Journal of Methods in Psychiatric Research, 13, 141151. doi: 10.1002/mpr.170CrossRefGoogle ScholarPubMed
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research—recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. doi: 10.3389/fpsyg.2017.00213CrossRefGoogle ScholarPubMed
Lahat, A., Tang, A., Tanaka, M., Lieshout, R. J. V., MacMillan, H. L., & Schmidt, L. A. (2018). Longitudinal associations among child maltreatment, resting frontal electroencephalogram asymmetry, and adolescent shyness. Child Development, 89, 746757. doi: 10.1111/cdev.13060CrossRefGoogle ScholarPubMed
Lau, J. T., Griffiths, S., Choi, K. C., & Tsui, H. Y. (2010). Avoidance behaviors and negative psychological responses in the general population in the initial stage of the H1N1 pandemic in Hong Kong. BMC Infectious Diseases, 10, 139. doi: 10.1186/1471-2334-10-139CrossRefGoogle ScholarPubMed
Li, Z., Sturge-Apple, M. L., Martin, M. J., & Davies, P. T. (2019). Interactive effects of family instability and adolescent stress reactivity on socioemotional functioning. Developmental Psychology, 55, 21932202. doi: 10.1037/dev0000784CrossRefGoogle ScholarPubMed
Lin, B., Kidwell, M. C., Kerig, P. K., Crowell, S. E., & Fortuna, A. J. (2021). Profiles of autonomic stress responsivity in a sample of justice-involved youth: Associations with childhood trauma exposure and emotional and behavioral functioning. Developmental Psychobiology, 63, 206225. doi: 10.1002/dev.21968CrossRefGoogle Scholar
McLaughlin, K. A., Rith-Najarian, L., Dirks, M. A., & Sheridan, M. A. (2015). Low vagal tone magnifies the association between psychosocial stress exposure and internalizing psychopathology in adolescents. Journal of Clinical Child and Adolescent Psychology: The Official Journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division 53, 44, 314328. doi: 10.1080/15374416.2013.843464CrossRefGoogle ScholarPubMed
Mertens, G., Gerritsen, L., Duijndam, S., Salemink, E., & Engelhard, I. M. (2020). Fear of the coronavirus (COVID-19): Predictors in an online study conducted in march 2020. Journal of Anxiety Disorders, 74, 102258. doi: 10.1016/j.janxdis.2020.102258CrossRefGoogle Scholar
Miller, J. G. (2018). Physiological mechanisms of prosociality. Current Opinion in Psychology, 20, 5054. doi: 10.1016/j.copsyc.2017.08.018CrossRefGoogle ScholarPubMed
Miller, J. G., Chocol, C., Nuselovici, J. N., Utendale, W. T., Simard, M., & Hastings, P. D. (2013). Children's dynamic RSA change during anger and its relations with parenting, temperament, and control of aggression. Biological Psychology, 92, 417425. doi: 10.1016/j.biopsycho.2012.12.005CrossRefGoogle ScholarPubMed
Miller, J. G., & Hastings, P. D. (2019). Parenting, neurobiology, and prosocial development. In Laible, D. J., Carlo, G. & Padilla-Walker, L. M. (Eds.), The Oxford handbook of parenting and moral development (pp. 129144). Oxford University Press. doi: 10.1093/oxfordhb/9780190638696.013.9Google Scholar
Miller, J. G., Kahle, S., & Hastings, P. D. (2017). Moderate baseline vagal tone predicts greater prosociality in children. Developmental Psychology, 53, 274289. doi: 10.1037/dev0000238CrossRefGoogle ScholarPubMed
Miller, J. G., Nuselovici, J. N., & Hastings, P. D. (2016). Nonrandom acts of kindness: Parasympathetic and subjective empathic responses to sadness predict children's prosociality. Child Development, 87, 16791690. doi: 10.1111/cdev.12629CrossRefGoogle ScholarPubMed
Miller, J. G., Xia, G., & Hastings, P. D. (2019). Resting heart rate variability is negatively associated with mirror neuron and limbic response to emotional faces. Biological Psychology, 146, 107717. doi: 10.1016/j.biopsycho.2019.107717CrossRefGoogle ScholarPubMed
Monroe, S. M. (2008). Modern approaches to conceptualizing and measuring human life stress. Annual Review of Clinical Psychology, 4, 3352. doi: 10.1146/annurev.clinpsy.4.022007.141207CrossRefGoogle ScholarPubMed
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425. doi: 10.1037/0033-2909.110.3.406CrossRefGoogle ScholarPubMed
Obradović, J., Bush, N. R., & Boyce, W. T. (2011). The interactive effect of marital conflict and stress reactivity on externalizing and internalizing symptoms: The role of laboratory stressors. Development and Psychopathology, 23, 101114. doi: 10.1017/S0954579410000672CrossRefGoogle ScholarPubMed
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289. doi: 10.1111/j.1467-8624.2009.01394.xCrossRefGoogle ScholarPubMed
Obradović, J., & Finch, J. E. (2017). Linking executive function skills and physiological challenge response: Piecewise growth curve modeling. Developmental Science, 20, e12476. doi: 10.1111/desc.12476CrossRefGoogle ScholarPubMed
Obradović, J., Portilla, X. A., & Ballard, P. J. (2016). Biological sensitivity to family income: Differential effects on early executive functioning. Child Development, 87, 374384. doi: 10.1111/cdev.12475CrossRefGoogle ScholarPubMed
Penttilä, J., Helminen, A., Jartti, T., Kuusela, T., Huikuri, H. V., Tulppo, M. P., … Scheinin, H. (2001). Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clinical Physiology (Oxford, England), 21, 365376. doi: 10.1046/j.1365-2281.2001.00337.xCrossRefGoogle ScholarPubMed
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143. doi: 10.1016/j.biopsycho.2006.06.009CrossRefGoogle ScholarPubMed
Porges, S. W., Doussard-Roosevelt, J. A., Portales, A. L., & Suess, P. E. (1994). Cardiac vagal tone: Stability and relation to difficultness in infants and 3-year-olds. Developmental Psychobiology, 27, 289300. doi: 10.1002/dev.420270504CrossRefGoogle ScholarPubMed
Prime, H., Wade, M., & Browne, D. T. (2020). Risk and resilience in family well-being during the COVID-19 pandemic. The American Psychologist, 75, 631643. doi: 10.1037/amp0000660CrossRefGoogle ScholarPubMed
Richards, J. S., Arias Vásquez, A., von Rhein, D., van der Meer, D., Franke, B., Hoekstra, P. J., … Hartman, C. A. (2016). Adolescent behavioral and neural reward sensitivity: A test of the differential susceptibility theory. Translational Psychiatry, 6, e771e771. doi: 10.1038/tp.2016.37CrossRefGoogle ScholarPubMed
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409. doi: 10.1017/S0954579412000065CrossRefGoogle ScholarPubMed
Roubinov, D., Bush, N. R., & Boyce, W. T. (2020). How a pandemic could advance the science of early adversity. JAMA Pediatrics, doi: 10.1001/jamapediatrics.2020.2354CrossRefGoogle ScholarPubMed
Schriber, R. A., Anbari, Z., Robins, R. W., Conger, R. D., Hastings, P. D., & Guyer, A. E. (2017). Hippocampal volume as an amplifier of the effect of social context on adolescent depression. Clinical Psychological Science, 5, 632649. doi: 10.1177/2167702617699277CrossRefGoogle ScholarPubMed
Scott, B. G., & Weems, C. F. (2014). Resting vagal tone and vagal response to stress: Associations with anxiety, aggression, and perceived anxiety control among youths. Psychophysiology, 51, 718727. doi: 10.1111/psyp.12218CrossRefGoogle ScholarPubMed
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5), doi: 10.3389/fpubh.2017.00258CrossRefGoogle ScholarPubMed
Shanahan, L., Calkins, S. D., Keane, S. P., Kelleher, R., & Suffness, R. (2014). Trajectories of internalizing symptoms across childhood: The roles of biological self-regulation and maternal psychopathology. Development and Psychopathology, 26, 13531368. doi: 10.1017/S0954579414001072CrossRefGoogle ScholarPubMed
Shell, M. D., Gazelle, H., & Faldowski, R. A. (2014). Anxious solitude and the middle school transition: A diathesis × stress model of peer exclusion and victimization trajectories. Developmental Psychology, 50, 15691583. doi: 10.1037/a0035528CrossRefGoogle ScholarPubMed
Skowron, E. A., Cipriano-Essel, E., Gatzke-Kopp, L. M., Teti, D. M., & Ammerman, R. T. (2014). Early adversity, RSA, and inhibitory control: Evidence of children's neurobiological sensitivity to social context. Developmental Psychobiology, 56, 964978. doi: 10.1002/dev.21175CrossRefGoogle ScholarPubMed
Sturge-Apple, M. L., Suor, J. H., Davies, P. T., Cicchetti, D., Skibo, M. A., & Rogosch, F. A. (2016). Vagal tone and children's delay of gratification: Differential sensitivity in resource-poor and resource-rich environments. Psychological Science, 27, 885893. doi: 10.1177/0956797616640269CrossRefGoogle ScholarPubMed
Thompson, R. R., Garfin, D. R., Holman, E. A., & Silver, R. C. (2017). Distress, worry, and functioning following a global health crisis: A national study of Americans’ responses to ebola. Clinical Psychological Science, 5, 513521. doi: 10.1177/2167702617692030CrossRefGoogle Scholar
Wagner, N. J., Hastings, P. D., & Rubin, K. H. (2018). Children's autonomic functioning moderates links between maternal rejecting attitudes and preschool aggressive behaviors. Developmental Psychobiology, 60, 739747. doi: 10.1002/dev.21747CrossRefGoogle ScholarPubMed