Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T00:01:48.627Z Has data issue: false hasContentIssue false

Gyrification and neural connectivity in schizophrenia

Published online by Cambridge University Press:  24 January 2011

Tonya White*
Affiliation:
Erasmus Medical Centre, Rotterdam University of Minnesota
Claus C. Hilgetag
Affiliation:
Jacobs University Bremen Boston University
*
Address correspondence and reprint requests to: Tonya White, Afdeling Kinder-en Jeugdpsychiatrie, Erasmus Medical Centre, Sophia, kamer wk219, Postbus 2060, Rotterdam 3000 CB, The Netherlands; E-mail: [email protected].

Abstract

There is emerging evidence for a connection between the surface morphology of the brain and its underlying connectivity. The foundation for this relationship is thought to be established during brain development through the shaping influences of tension exerted by viscoelastic nerve fibers. The tension-based morphogenesis results in compact wiring that enhances efficient neural processing. Individuals with schizophrenia present with multiple symptoms that can include impaired thought, action, perception, and cognition. The global nature of these symptoms has led researchers to explore a more global disruption of neuronal connectivity as a theory to explain the vast array of clinical and cognitive symptoms in schizophrenia. If cerebral function and form are linked through the organization of neural connectivity, then a disruption in neural connectivity may also alter the surface morphology of the brain. This paper reviews developmental theories of gyrification and the potential interaction between gyrification and neuronal connectivity. Studies of gyrification abnormalities in children, adolescents, and adults with schizophrenia demonstrate a relationship between disrupted function and altered morphology in the surface patterns of the cerebral cortex. This altered form may provide helpful clues in understanding the neurobiological abnormalities associated with schizophrenia.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, J., Addington, D., & Maticka-Tyndale, E. (1991). Cognitive functioning and positive and negative symptoms in schizophrenia. Schizophrenia Research, 5, 123134.CrossRefGoogle ScholarPubMed
Agartz, I., Andersson, J. L., & Skare, S. (2001). Abnormal brain white matter in schizophrenia: A diffusion tensor imaging study. NeuroReport, 12, 22512254.CrossRefGoogle ScholarPubMed
Allmann, J. (2000). Evolving brains. New York: W. H. Freeman & Co.Google Scholar
Andreasen, N. C., Flashman, L., Flaum, M., Arndt, S., Swayze V, III, O'Leary, D. S., et al. (1994). Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. Journal of the American Medical Association, 272, 17631769.Google Scholar
Andreasen, N. C., Nopoulos, P., O'Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908920.CrossRefGoogle ScholarPubMed
Andreasen, N. C., & Olsen, S. (1982). Negative v positive schizophrenia. Definition and validation. Archives of General Psychiatry, 39, 789794.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Paradiso, S., & O'Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical–subcortical–cerebellar circuitry? Schizophrenia Bulletin, 24, 203218.CrossRefGoogle ScholarPubMed
Ardekani, B. A., Nierenberg, J., Hoptman, M. J., Javitt, D. C., & Lim, K. O. (2003). MRI study of white matter diffusion anisotropy in schizophrenia. NeuroReport, 14, 20252029.Google Scholar
Armstrong, E., Curtis, M., Buxhoeveden, D. P., Fregoe, C., Zilles, K., Casanova, M. F., et al. (1991). Cortical gyrification in the rhesus monkey: A test of the mechanical folding hypothesis. Cerebral Cortex, 1, 426432.CrossRefGoogle ScholarPubMed
Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex, 5, 5663.CrossRefGoogle ScholarPubMed
Bartzokis, G., Nuechterlein, K. H., Lu, P. H., Gitlin, M., Rogers, S., & Mintz, J. (2003). Dysregulated brain development in adult men with schizophrenia: A magnetic resonance imaging study. Biological Psychiatry, 53, 412421.CrossRefGoogle ScholarPubMed
Begre, S., & Koenig, T. (2008). Cerebral disconnectivity: An early event in schizophrenia. Neuroscientist, 14, 1945.Google Scholar
Benes, F. M. (1989). Myelination of cortical–hippocampal relays during late adolescence. Schizophrenia Bulletin, 15, 585593.CrossRefGoogle ScholarPubMed
Benes, F. M. (1998). Brain development: VII. Human brain growth spans decades. American Journal of Psychiatry, 155, 1489.Google Scholar
Bonnici, H. M., William, T., Moorhead, J., Stanfield, A. C., Harris, J. M., Owens, D. G., et al. (2007). Pre-frontal lobe gyrification index in schizophrenia, mental retardation and comorbid groups: An automated study. NeuroImage, 35, 648654.Google Scholar
Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity. Berlin: Springer.CrossRefGoogle Scholar
Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2009). Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience and Biobehavioral Reviews, 33, 279296.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Tang, C. Y., Peled, S., Gudbjartsson, H., Lu, D., Hazlett, E. A., et al. (1998). MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. NeuroReport, 9, 425430.Google Scholar
Burns, J., Job, D., Bastin, M. E., Whalley, H., Macgillivray, T., Johnstone, E. C., et al. (2003). Structural disconnectivity in schizophrenia: A diffusion tensor magnetic resonance imaging study. British Journal of Psychiatry, 182, 439443.Google Scholar
Cachia, A., Paillere-Martinot, M. L., Galinowski, A., Januel, D., de Beaurepaire, R., Bellivier, F., et al. (2008). Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. NeuroImage, 39, 927935.Google Scholar
Changizi, M. A. (2001). Principles underlying mammalian neocortical scaling. Biological Cybernetics, 84, 207215.CrossRefGoogle ScholarPubMed
Chenn, A., & Walsh, C. A. (2002). Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science, 297, 365369.CrossRefGoogle ScholarPubMed
Chklovskii, D. B., Schikorski, T., & Stevens, C. F. (2002). Wiring optimization in cortical circuits. Neuron, 34, 341347.Google Scholar
Colter, N., Battal, S., Crow, T. J., Johnstone, E. C., Brown, R., & Bruton, C. (1987). White matter reduction in the parahippocampal gyrus of patients with schizophrenia. Archives of General Psychiatry, 44, 1023.Google Scholar
Davis, K. L., Stewart, D. G., Friedman, J. I., Buchsbaum, M., Harvey, P. D., Hof, P. R., et al. (2003). White matter changes in schizophrenia: Evidence for myelin-related dysfunction. Archives of General Psychiatry, 60, 443456.Google Scholar
Falkai, P., Honer, W. G., Kamer, T., Dustert, S., Vogeley, K., Schneider-Axmann, T., et al. (2007). Disturbed frontal gyrification within families affected with schizophrenia. Journal of Psychiatric Research, 41, 805813.CrossRefGoogle ScholarPubMed
Franze, K., Reichenbach, A., & Käs, J. (2008). Biomechanics of the CNS. In Kamkin, A. & Kiseleva, I. (Eds.), Mechanosensitivity in cells and tissues. Mechanosensitivity of the nervous system (pp. 173–213). Dordrecht: Springer.Google Scholar
Friedman, L., Findling, R. L., Kenny, J. T., Swales, T. P., Stuve, T. A., Jesberger, J. A., et al. (1999). An MRI study of adolescent patients with either schizophrenia or bipolar disorder as compared to healthy control subjects. Biological Psychiatry, 46, 7888, Erratum, 584.CrossRefGoogle ScholarPubMed
Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 5678.Google Scholar
Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115125.Google Scholar
Giedd, J. N., Jeffries, N. O., Blumenthal, J., Castellanos, F. X., Vaituzis, A. C., Fernandez, T., et al. (1999). Childhood-onset schizophrenia: Progressive brain changes during adolescence. Biological Psychiatry, 46, 892898.Google Scholar
Goldman-Rakic, P. S. (1980). Morphological consequences of prenatal injury to the primate brain. Progress in Brain Research, 53, 119.Google Scholar
Goldman-Rakic, P. S., & Rakic, P. (1984). Experimental modification of gyral patterns. In Geschwind, N. & Galaburda, A. (Eds.), Cerebral dominance (pp. 179–192). Cambridge, MA: Harvard University Press.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.Google Scholar
Gregorio, S. P., Sallet, P. C., Do, K. A., Lin, E., Gattaz, W. F., & Dias-Neto, E. (2009). Polymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: Preliminary evidence. Psychiatry Research, 165, 19.Google Scholar
Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 7278.Google Scholar
Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 47464751.Google Scholar
Harris, J. M., Moorhead, T. W., Miller, P., McIntosh, A. M., Bonnici, H. M., Owens, D. G., et al. (2007). Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biological Psychiatry, 62, 722729.Google Scholar
Harris, J. M., Whalley, H., Yates, S., Miller, P., Johnstone, E. C., & Lawrie, S. M. (2004). Abnormal cortical folding in high-risk individuals: A predictor of the development of schizophrenia? Biological Psychiatry, 56, 182189.Google Scholar
Harris, J. M., Yates, S., Miller, P., Best, J. J., Johnstone, E. C., & Lawrie, S. M. (2004). Gyrification in first-episode schizophrenia: A morphometric study. Biological Psychiatry, 55, 141147.Google Scholar
Heckers, S., Heinsen, H., Geiger, B., & Beckmann, H. (1991). Hippocampal neuron number in schizophrenia. A stereological study. Archives of General Psychiatry, 48, 10021008.CrossRefGoogle ScholarPubMed
Heidemann, S. R., Lamoureux, P., & Buxbaum, R. E. (1995). Cytomechanics of axonal development. Cell Biochemistry and Biophysics, 27, 135155.Google Scholar
Highley, J. R., DeLisi, L. E., Roberts, N., Webb, J. A., Relja, M., Razi, K., et al. (2003). Sex-dependent effects of schizophrenia: An MRI study of gyral folding, and cortical and white matter volume. Psychiatry Research, 124, 1123.Google Scholar
Highley, J. R., Walker, M. A., Esiri, M. M., Crow, T. J., & Harrison, P. J. (2002). Asymmetry of the uncinate fasciculus: A post-mortem study of normal subjects and patients with schizophrenia. Cerebral Cortex, 12, 12181224.Google Scholar
Hilgetag, C. C., & Barbas, H. (2005). Developmental mechanics of the primate cerebral cortex. Anatomy and Embryology (Berlin), 210, 411417.CrossRefGoogle ScholarPubMed
Hilgetag, C. C., & Barbas, H. (2006). Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Computational Biology, 2(3), e22.CrossRefGoogle ScholarPubMed
His, W. (1874). Unsere Körperform und das physiologische Problem ihrer Entstehung. Leipzig: F. C. W. Vogel.Google Scholar
Hofman, M. A. (1989). On the evolution and geometry of the brain in mammals. Progress in Neurobiology, 32, 137158.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—Developmental changes and effects of aging. Brain Research, 163, 195205.Google Scholar
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., De Courten, C., Garey, L. J., & van der Loos, H. (1982). Synaptic development in human cerebral cortex. International Journal of Neurology, 17, 144154.Google Scholar
Johnstone, E. C., Owens, D. G., Frith, C. D., & Crow, T. J. (1987). The relative stability of positive and negative features in chronic schizophrenia. British Journal of Psychiatry, 150, 6064.Google Scholar
Jou, R. J., Hardan, A. Y., & Keshavan, M. S. (2005). Reduced cortical folding in individuals at high risk for schizophrenia: A pilot study. Schizophrenia Research, 75, 309313.Google Scholar
Kaiser, M., & Hilgetag, C. C. (2006). Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology, 2(7), e95.Google Scholar
Kanaan, R. A., Kim, J. S., Kaufmann, W. E., Pearlson, G. D., Barker, G. J., & McGuire, P. K. (2005). Diffusion tensor imaging in schizophrenia. Biological Psychiatry, 58, 921929.Google Scholar
Karlsgodt, K. H., Sun, D., Jimenez, A. M., Lutkenhoff, E. S., Willhite, R., van Erp, T. G., et al. (2008). Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Development and Psychopathology, 20, 12971327.CrossRefGoogle ScholarPubMed
Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63, 512518.CrossRefGoogle ScholarPubMed
Kendi, M., Kendi, A. T., Lehericy, S., Ducros, M., Lim, K. O., Ugurbil, K., et al. (2008). Structural and diffusion tensor imaging of the fornix in childhood- and adolescent-onset schizophrenia. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 826832.Google Scholar
Köbbert, C., Apps, R., Bechmann, I., Lanciego, J. L., Mey, J., & Thanos, S. (2000). Current concepts in neuroanatomical tracing. Progress in Neurobiology, 62, 327351.Google Scholar
Koenderink, J. J., & van Doorn, A. J. (1992). Surface shape and curvature scales. Image and Vision Computing, 10, 557564.Google Scholar
Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34, 7292.Google Scholar
Kriegstein, A., Noctor, S., & Martinez-Cerdeno, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 7, 883890.Google Scholar
Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R., et al. (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41, 1530.CrossRefGoogle ScholarPubMed
Kulynych, J. J., Luevano, L. F., Jones, D. W., & Weinberger, D. R. (1997). Cortical abnormality in schizophrenia: An in vivo application of the gyrification index. Biological Psychiatry, 41, 995999.CrossRefGoogle Scholar
Kumra, S., Ashtari, M., Cervellione, K. L., Henderson, I., Kester, H., Roofeh, D., et al. (2005). White matter abnormalities in early-onset schizophrenia: A voxel-based diffusion tensor imaging study. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 934941.Google Scholar
Kumra, S., Ashtari, M., McMeniman, M., Vogel, J., Augustin, R., Becker, D. E., et al. (2004). Reduced frontal white matter integrity in early-onset schizophrenia: A preliminary study. Biological Psychiatry, 55, 11381145.CrossRefGoogle ScholarPubMed
Kumra, S., Giedd, J. N., Vaituzis, A. C., Jacobsen, L. K., McKenna, K., Bedwell, J., et al. (2000). Childhood-onset psychotic disorders: Magnetic resonance imaging of volumetric differences in brain structure. American Journal of Psychiatry, 157, 14671474.CrossRefGoogle ScholarPubMed
Kyriakopoulos, M., Bargiotas, T., Barker, G. J., & Frangou, S. (2008). Diffusion tensor imaging in schizophrenia. European Psychiatry, 23, 255273.CrossRefGoogle ScholarPubMed
Lawrie, S. M., Buechel, C., Whalley, H. C., Frith, C. D., Friston, K. J., & Johnstone, E. C. (2002). Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biological Psychiatry, 51, 10081011.Google Scholar
Le Gross Clark, W. E. (1945). Deformation patterns on the cerebral cortex. In LeGross, W. E. Clark & Medawar, P. B. (Eds.), Essays on growth and form (pp. 1–23). Oxford: Oxford University Press.Google Scholar
Lim, K. O., Hedehus, M., Moseley, M., de Crespigny, A., Sullivan, E. V., & Pfefferbaum, A. (1999). Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Archives of General Psychiatry, 56, 367374.CrossRefGoogle ScholarPubMed
Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., et al. (2008). Disrupted small-world networks in schizophrenia. Brain, 131, 945961.CrossRefGoogle ScholarPubMed
Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L., Steinmetz, H., et al. (2004). Gender differences in cortical complexity. Nature Neuroscience, 7, 799800.Google Scholar
Luders, E., Thompson, P. M., Narr, K. L., Toga, A. W., Jancke, L., & Gaser, C. (2006). A curvature-based approach to estimate local gyrification on the cortical surface. NeuroImage, 29, 12241230.Google Scholar
Magnotta, V. A., Andreasen, N. C., Schultz, S. K., Harris, G., Cizadlo, T., Heckel, D., et al. (1999). Quantitative in vivo measurement of gyrification in the human brain: changes associated with aging. Cerebral Cortex, 9, 151160.CrossRefGoogle ScholarPubMed
McIntosh, A. M., Moorhead, T. W., McKirdy, J., Hall, J., Sussmann, J. E., Stanfield, A. C., et al. (2009). Prefrontal gyral folding and its cognitive correlates in bipolar disorder and schizophrenia. Acta Psychiatrica Scandinavica, 119, 192198.CrossRefGoogle Scholar
Meyer-Lindenberg, A., Poline, J. B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., et al. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry, 158, 18091817.Google Scholar
Meyer-Lindenberg, A. S., Olsen, R. K., Kohn, P. D., Brown, T., Egan, M. F., Weinberger, D. R., et al. (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry, 62, 379386.CrossRefGoogle ScholarPubMed
Micheloyannis, S., Pachou, E., Stam, C. J., Breakspear, M., Bitsios, P., Vourkas, M., et al. (2006). Small-world networks and disturbed functional connectivity in schizophrenia. Schizophrenia Research, 87, 6066.Google Scholar
Moorhead, T. W., Harris, J. M., Stanfield, A. C., Job, D. E., Best, J. J., Johnstone, E. C., et al. (2006). Automated computation of the gyrification index in prefrontal lobes: Methods and comparison with manual implementation. NeuroImage, 31, 15601566.Google Scholar
Murre, J. M., & Sturdy, D. P. (1995). The connectivity of the brain: Multi-level quantitative analysis. Biological Cybernetics, 73, 529545.CrossRefGoogle ScholarPubMed
Narr, K., Thompson, P., Sharma, T., Moussai, J., Zoumalan, C., Rayman, J., & Toga, A. (2001). Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: Gender effects. American Journal of Psychiatry, 158, 244255.CrossRefGoogle ScholarPubMed
Narr, K. L., Bilder, R. M., Kim, S., Thompson, P. M., Szeszko, P., Robinson, D., et al. (2004). Abnormal gyral complexity in first-episode schizophrenia. Biological Psychiatry, 55, 859867.CrossRefGoogle ScholarPubMed
Neal, J., Takahashi, M., Silva, M., Tiao, G., Walsh, C. A., & Sheen, V. L. (2007). Insights into the gyrification of developing ferret brain by magnetic resonance imaging. Journal of Anatomy, 210, 6677.Google Scholar
Nopoulos, P., Flaum, M., O'Leary, D., & Andreasen, N. C. (2000). Sexual dimorphism in the human brain: Evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research, 98, 113.CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Zipursky, R. B., Lim, K. O., Zatz, L. M., Stahl, S. M., & Jernigan, T. L. (1988). Computed tomographic evidence for generalized sulcal and ventricular enlargement in schizophrenia. Archives of General Psychiatry, 45, 633640.Google Scholar
Piao, X., Hill, R. S., Bodell, A., Chang, B. S., Basel-Vanagaite, L., Straussberg, R., et al. (2004). G protein-coupled receptor-dependent development of human frontal cortex. Science, 303(5666), 20332036.Google Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241(4862), 170176.CrossRefGoogle ScholarPubMed
Rakic, P. (1995). A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neuroscience, 18, 383388.Google Scholar
Rapoport, J. L., Giedd, J. N., Blumenthal, J., Hamburger, S., Jeffries, N., Fernandez, T., et al. (1999). Progressive cortical change during adolescence in childhood-onset schizophrenia. A longitudinal magnetic resonance imaging study. Archives of General Psychiatry, 56, 649654.Google Scholar
Richman, D. P., Stewart, R. M., Hutchinson, J. W., & Caviness, V. S. Jr. (1975). Mechanical model of brain convolutional development. Science, 189(4196), 1821.CrossRefGoogle ScholarPubMed
Rose, S. E., Chalk, J. B., Janke, A. L., Strudwick, M. W., Windus, L. C., Hannah, D. E., et al. (2006). Evidence of altered prefrontal–thalamic circuitry in schizophrenia: An optimized diffusion MRI study. NeuroImage, 32, 1622.Google Scholar
Ruppin, E., Schwartz, E. L., & Yeshurun, Y. (1993). Examining the volume efficiency of the cortical architecture in a multi-processor network model. Biological Cybernetics, 70, 8994.Google Scholar
Sallet, P. C., Elkis, H., Alves, T. M., Oliveira, J. R., Sassi, E., Campi de Castro, C., et al. (2003). Reduced cortical folding in schizophrenia: An MRI morphometric study. American Journal of Psychiatry, 160, 16061613.Google Scholar
Schaer, M., Cuadra, M. B., Tamarit, L., Lazeyras, F., Eliez, S., & Thiran, J. P. (2008). A surface-based approach to quantify local cortical gyrification. IEEE Transactions in Medical Imaging, 27, 161170.CrossRefGoogle ScholarPubMed
Schlosser, R., Gesierich, T., Kaufmann, B., Vucurevic, G., Hunsche, S., Gawehn, J., et al. (2003). Altered effective connectivity during working memory performance in schizophrenia: A study with fMRI and structural equation modeling. NeuroImage, 19, 751763.CrossRefGoogle ScholarPubMed
Shimony, J. S., Snyder, A. Z., Conturo, T. E., & Corbetta, M. (2004). The study of neural connectivity using diffusion tensor tracking. Cortex, 40, 213215.Google Scholar
Sowell, E. R., Toga, A. W., & Asarnow, R. (2000). Brain abnormalities observed in childhood-onset schizophrenia: A review of the structural magnetic resonance imaging literature. Mental Retardation and Developmental Disabilities Research Reviews, 6, 180185.Google Scholar
Sporn, A. L., Greenstein, D. K., Gogtay, N., Jeffries, N. O., Lenane, M., Gochman, P., et al. (2003). Progressive brain volume loss during adolescence in childhood-onset schizophrenia. American Journal of Psychiatry, 160, 21812189.CrossRefGoogle ScholarPubMed
Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Science, 8, 418425.Google Scholar
Stanfield, A. C., Moorhead, T. W., Harris, J. M., Owens, D. G., Lawrie, S. M., & Johnstone, E. C. (2008). Increased right prefrontal cortical folding in adolescents at risk of schizophrenia for cognitive reasons. Biological Psychiatry, 63, 8085.CrossRefGoogle ScholarPubMed
Stephan, K. E., Magnotta, V. A., White, T., Arndt, S., Flaum, M., O'Leary, D. S., et al. (2001). Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychological Medicine, 31, 10651078.Google Scholar
Stewart, R. M., Richman, D. P., & Caviness, V. S. Jr. (1975). Lissencephaly and pachygyria: An architectonic and topographical analysis. Acta Neuropathologica (Berlin), 31, 112.Google Scholar
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268276.CrossRefGoogle ScholarPubMed
Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 12531258.Google Scholar
Thompson, P. M., Lee, A. D., Dutton, R. A., Geaga, J. A., Hayashi, K. M., Eckert, M. A., et al. (2005). Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. Journal of Neuroscience, 25, 41464158.Google Scholar
Thompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., & Toga, A. W. (1996). Three-dimensional statistical analysis of sulcal variability in the human brain. Journal of Neuroscience, 16, 42614274.Google Scholar
Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., et al. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 1165011655.Google Scholar
Toro, R., & Burnod, Y. (2005). A morphogenetic model for the development of cortical convolutions. Cerebral Cortex, 15, 19001913.CrossRefGoogle ScholarPubMed
Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313318.Google Scholar
Van Essen, D. C. (2007). Cause and effect in cortical folding. Nature Reviews Neuroscience, 8, 12.Google Scholar
Vogeley, K., Schneider-Axmann, T., Pfeiffer, U., Tepest, R., Bayer, T. A., Bogerts, B., et al. (2000). Disturbed gyrification of the prefrontal region in male schizophrenic patients: A morphometric postmortem study. American Journal of Psychiatry, 157, 3439.Google Scholar
Vogeley, K., Tepest, R., Pfeiffer, U., Schneider-Axmann, T., Maier, W., Honer, W. G., et al. (2001). Right frontal hypergyria differentiation in affected and unaffected siblings from families multiply affected with schizophrenia: A morphometric MRI study. American Journal of Psychiatry, 158, 494496.Google Scholar
Volkow, N. D., Wolf, A. P., Brodie, J. D., Cancro, R., Overall, J. E., Rhoades, H., et al. (1988). Brain interactions in chronic schizophrenics under resting and activation conditions. Schizophrenia Research, 1, 4753.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F., Suddath, R., & Torrey, F. (1992). Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance and regional cerebral blood flow study of discordant monozygotic twins. American Journal of Psychiatry, 149, 890897.Google ScholarPubMed
Weinberger, D. R., Torrey, E. F., Neophytides, A. N., & Wyatt, R. J. (1979). Structural abnormalities in the cerebral cortex of chronic schizophrenic patients. Archives of General Psychiatry, 36, 935939.Google Scholar
Welker, W. (1990). Why does cerebral cortex fissure and fold. In Jones, E. G. & Peters, A. (Eds.), Cerebral cortex (pp. 3136). New York: Plenum Press.Google Scholar
Wen, Q., & Chklovskii, D. B. (2005). Segregation of the brain into gray and white matter: A design minimizing conduction delays. PLoS Computational Biology, 1(7), e78.Google Scholar
Wheeler, D. G., & Harper, C. G. (2007). Localised reductions in gyrification in the posterior cingulate: Schizophrenia and controls. Progress in Neuropsychopharmacology and Biological Psychiatry, 31, 319327.Google Scholar
White, T., Andreasen, N. C., & Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cerebral Cortex, 12, 486493.Google Scholar
White, T., Andreasen, N. C., Nopoulos, P., & Magnotta, V. (2003). Gyrification abnormalities in childhood- and adolescent-onset schizophrenia. Biological Psychiatry, 54, 418426.CrossRefGoogle ScholarPubMed
White, T., Ho, B. C., Ward, J., O'Leary, D., & Andreasen, N. C. (2006). Neuropsychological performance in first-episode adolescents with schizophrenia: A comparison with first-episode adults and adolescent control subjects. Biological Psychiatry, 60, 463471.Google Scholar
White, T., Kendi, A. T., Lehericy, S., Kendi, M., Karatekin, C., Guimaraes, A., et al. (2007). Disruption of hippocampal connectivity in children and adolescents with schizophrenia—A voxel-based diffusion tensor imaging study. Schizophrenia Research, 90, 302307.Google Scholar
White, T., Nelson, M., & Lim, K. O. (2008). Diffusion tensor imaging in psychiatric disorders. Topics in Magnetic Resonance Imaging, 19, 97109.CrossRefGoogle ScholarPubMed
White, T., Schmidt, M., & Karatekin, C. (2009). White matter “potholes” in early-onset schizophrenia: A new approach to evaluate white matter microstructure using diffusion tensor imaging. Psychiatry Research, 174, 110115.CrossRefGoogle ScholarPubMed
White, T., Su, S., Schmidt, M., Kao, C. Y., & Sapiro, G. (2010). The development of gyrification in childhood and adolescence. Brain and Cognition, 72, 3645.CrossRefGoogle ScholarPubMed
Wiegand, L. C., Warfield, S. K., Levitt, J. J., Hirayasu, Y., Salisbury, D. F., Heckers, S., et al. (2005). An in vivo MRI study of prefrontal cortical complexity in first-episode psychosis. American Journal of Psychiatry, 162, 6570.CrossRefGoogle Scholar
Winterer, G., Coppola, R., Egan, M. F., Goldberg, T. E., & Weinberger, D. R. (2003). Functional and effective frontotemporal connectivity and genetic risk for schizophrenia. Biological Psychiatry, 54, 11811192.Google Scholar
Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (Ed.), Regional development of the brain in early life (pp. 370). Oxford: Blackwell.Google Scholar
Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology, 179, 173179.Google Scholar
Zilles, K., Schleicher, A., Langemann, C., Amunts, K., Morosan, P., Palomero-Gallagher, N., et al. (1997). Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Human Brain Mapping, 5, 218221.3.0.CO;2-6>CrossRefGoogle ScholarPubMed