Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:47:53.092Z Has data issue: false hasContentIssue false

Genetic moderation of interpersonal psychotherapy efficacy for low-income mothers with major depressive disorder: Implications for differential susceptibility

Published online by Cambridge University Press:  02 February 2015

Dante Cicchetti*
Affiliation:
University of Minnesota Institute of Child Development University of Rochester Mt. Hope Family Center
Sheree L. Toth
Affiliation:
University of Rochester Mt. Hope Family Center
Elizabeth D. Handley
Affiliation:
University of Rochester Mt. Hope Family Center
*
Address correspondence and reprint requests to: Dante Cicchetti, Institute of Child Development, University of Minnesota, 51 East River Road, Mineapolis, MN 55455; E-mail: [email protected].

Abstract

Genetic moderation of interpersonal psychotherapy (IPT) efficacy for economically disadvantaged women with major depressive disorder was examined. Specifically, we investigated whether genotypic variation in corticotropin releasing hormone receptor 1 (CRHR1) and the linked polymorphic region of the serotonin transporter gene (5-HTTLPR) moderated effects of IPT on depressive symptoms over time. We also tested genotype moderation of IPT mechanisms on social adjustment and perceived stress. Non-treatment-seeking urban women at or below the poverty level with infants were recruited from the community (N = 126; M age = 25.33 years, SD = 4.99; 54.0% African American, 22.2% Caucasian, and 23.8% Hispanic/biracial) and randomized to individual IPT or Enhanced Community Standard groups. The results revealed that changes in depressive symptoms over time depended on both intervention group and genotypes (5-HTTLPR and CRHR1). Moreover, multiple-group path analysis indicated that IPT improved depressive symptoms, increased social adjustment, and decreased perceived stress at posttreatment among women with the 0 copies of the CRHR1 TAT haplotype only. Finally, improved social adjustment at postintervention significantly mediated the effect of IPT on reduced depressive symptoms at 8 months postintervention for women with 0 copies of the TAT haplotype only. Post hoc analyses of 5-HTTLPR were indicative of differential susceptibility, albeit among African American women only.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Bagby, R. M., Ryder, A. G., Schuller, D. R., & Marshall, M. B. (2004). The Hamilton Depression Rating Scale: Has the gold standard become a lead weight? American Journal of Psychiatry, 161, 21632177.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.Google Scholar
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293.Google Scholar
Banny, A., Cicchetti, D., Rogosch, F. A., Crick, N. R., & Oshri, A. (2013). Vulnerability to depression: A moderated mediation model of the roles of child maltreatment, peer victimization, and serotonin transporter linked polymorphic region genetic variation among children from low socioeconomic status backgrounds. Development and Psychopathology, 25, 599614.Google Scholar
Bateman, B., & Fonagy, P. (1999). Effectiveness of partial hospitalization in the treatment of borderline personality disorder: A randomized controlled trial. American Journal of Psychiatry, 156, 15631569.Google Scholar
Beach, S. R. H., Brody, G. H., Kogan, S. M., Philibert, R. A., Chen, Y.-F., & Lei, M.-K. (2009). Change in caregiver depression in response to parent training: Genetic moderation of intervention effects. Journal of Family Psychology, 23, 112117.Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory—II. San Antonio, TX: Psychological Corporation.Google Scholar
Belsky, J. (1997). Theory testing, effect-size evaluation, and differential susceptibility to rearing influence: The case of mothering and attachment. Child Development, 68, 598600.CrossRefGoogle ScholarPubMed
Belsky, J. (2005). Differential susceptibility to rearing influences: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D. (Eds.), Origins of the social mind: Evoluntionary pyschology and child development (pp. 139163). New York: Guilford Press.Google Scholar
Belsky, J., Bakersman-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Bradley, R. G., Binder, E. B., Epstein, M. P., Tang, Y., Nair, H. P., Liu, W., et al. (2008). Influence of child abuse on adult depression: Moderation by the corticotrophin-releasing hormone receptor gene. Archives of General Psychiatry, 65, 190200.Google Scholar
Brody, G. H., Beach, S. R., Philibert, R. A., Chen, Y. F., & Murry, V. M. (2009). Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene × Environment hypotheses tested via a randomized prevention design. Child Development, 80, 645661.Google Scholar
Browne, A., & Bassuk, S. (1997). Intimate violence in the lives of homeless and poor housed women: Prevalence and patterns in an ethnically diverse sample. American Journal of Orthopsychiatry, 6, 261278.Google Scholar
Bukh, J. D., Bock, C., Vinberg, M., Werge, T., Gether, U., & Kessing, L. V. (2010). No interactions between genetic polymorphisms and stressful life events on outcome of antidepressant treatment. European Neuropsychopharmacology, 20, 327335.Google Scholar
Caspi, A., Hariri, A. R., Holmes, A., Usher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implicatons for studying complex disease and traits. American Journal of Psychiatry, 167, 509527.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H. L., et al. (2003). Influence of life stress on depression: Moderation by polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Chrousos, G. P. (1998). Stressors, stress, and neuroendocrine integration of the adaptive response: The 1997 Hans Selye Memorial Lecture. Annals of the New York Academy of Sciences, 851, 311335.Google Scholar
Chapman, D. P., Whitfield, C. L., Felitti, V. J., Dube, S. R., Edwards, V. J., & Anda, R. F. (2004). Adverse childhood experiences and the risk of depressive disorders in adulthood. Journal of Affective Disorders, 82, 217225.Google Scholar
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (Vol. 1, 2nd ed., pp. 123). Hoboken, NJ: Wiley.Google ScholarPubMed
Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis. Development and Psychopathology, 14, 417420.Google Scholar
Cicchetti, D., & Gunnar, M. R. (2008). Integrating biological processes into the design and evaluation of preventive interventions. Development and Psychopathology, 20, 737743.CrossRefGoogle Scholar
Cicchetti, D., & Lynch, M. (1993). Toward an ecological/transactional model of community violence and child maltreatment: Consequences for children's development. Psychiatry, 56, 96118.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2012). Gene by environment interaction and resilience: Effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Development and Psychopathology, 24, 411427.Google Scholar
Cicchetti, D., Rogosch, F. A., Hecht, K. F., Crick, N. R., & Hetzel, S. (2014). Moderation of maltreatment effects on childhood borderline personality symptoms by gender and oxytocin receptor and FK506 binding protein 5 genes. Development and Psychopathology, 26, 831849.Google Scholar
Cicchetti, D., Rogosch, F. A., & Oshri, A. (2011). Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and Psychopathology, 23, 11251138.Google Scholar
Cicchetti, D., & Toth, S. L. (1995). Developmental psychopathology and disorders of affect. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Risk, disorder, and adaptation (Vol. 2, pp. 369420). New York: Wiley.Google Scholar
Cicchetti, D., & Toth, S. L. (1998). The development of depression in children and adolescents. American Psychologist, 53, 221241.Google Scholar
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.Google Scholar
Cicchetti, D., & Toth, S. L. (in press). A multilevel perspective on child maltreatment. In Lamb, M. & Garcia Coll, C. (Eds.), Handbook of child psychology and developmental science: Vol. 3. Socioemotional process (7th ed.). Hoboken, NJ: Wiley.Google Scholar
Cohen, S., Kamarck, T., & Marmelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385396.Google Scholar
Danese, A. (2008). Genetic opportunites for psychiatric epidemiology: On life stress and depression. Epidemiologia e psichiatria sociale, 17, 201210.CrossRefGoogle Scholar
Davies, P. T., & Cicchetti, D. (2014). How and why does the 5-HTTLPR gene moderate associations between maternal unresponsiveness and children's problems? Child Development, 85, 484500.CrossRefGoogle Scholar
DeYoung, C., Cicchetti, D., & Rogosch, F. A. (2011). Moderation of the association between childhood maltreatment and neurotocism by the corticotropin-releasing hormone receptor 1 gene. Journal of Child Psychology and Psychiatry, 52, 898906.Google Scholar
Dozois, D. J. A., Dobson, K. S., & Ahnberg, J. L. (1998). A psychometric evaluation of the Beck Depression Inventory—II. Psychological Assessment, 10, 8389.Google Scholar
Duncan, L. E., & Keller, M. C. (2014). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.Google Scholar
Elkin, I., Shea, M. T., Watkins, J. T., Imber, S. D., Sotsky, S. M., Collins, J. F., et al. (1989). National Institute of Mental Health treatment of depression collaborative research program: General effectiveness of treatments. Archives of General Psychiatry, 46, 971.CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564567.CrossRefGoogle ScholarPubMed
Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 15671587.Google Scholar
Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes, 7, 574578.Google Scholar
Fonagy, P., Target, M., Cottrell, D., Phillips, J., & Kurtz, Z. (Eds.). (2002). What works for whom? A critical review of treatments for children and adolescents. New York: Guilford Press.Google Scholar
Gelernter, J., Kranzler, H., & Cubells, J. F. (1997). Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African- and European-American and Japanese populations and in alcohol-dependent subjects. Human Genetics, 101, 243246.Google Scholar
Grote, N. K., Swartz, H. A., Geibel, S. L., Zuckoff, A., Houck, P. R., & Frank, E. (2009). A randomized controlled trial of culturally relevant, brief interpersonal psychotherapy for perinatal depression. Psychiatric Services, 60, 313321.Google Scholar
Gunlicks-Stoessel, M., Mufson, L., Jekal, A., & Turner, B. (2010). The impact of perceived interpersonal functioning on treatment for adolescent depression: IPT-A versus treatment as usual in school-based health clinics. Journal of Consulting and Clinical Psychology, 78, 260267.Google Scholar
Gunnar, M. R., & Vazquez, D. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (2nd ed., pp. 533577). Hoboken, NJ: Wiley.Google Scholar
Hariri, A., & Holmes, A. (2006). Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends in Cognitive Science, 10, 182191.Google Scholar
Heim, C., & Binder, E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Experimental Neurology, 233, 102111.Google Scholar
Hollon, S. D., & Ponniah, K. (2010). A review of empirically supported psychological therapies for mood disorders in adults. Depression and Anxiety, 27, 891932.Google Scholar
Hornung, O., & Heim, C. (2014). Gene–environment interactions and intermediate phenotypes: Early trauma and depression. Frontiers in Endocrinology, 5, 14.Google Scholar
Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 13221332.Google Scholar
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444454.CrossRefGoogle ScholarPubMed
Keers, R., Uher, R., Huezo-Diaz, P., Smith, R., Jaffee, S., Rietschel, M., et al. (2011). Interaction between serotonin transporter gene variants and life events predicts response to antidepressants in the GENDEP project. Pharmacogenomics Journal, 11, 138145.Google Scholar
Keller, M. C. (2014). Gene × Environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824.Google Scholar
Kessler, R. C., Berglund, P. A., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., et al. (2003). The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). Journal of the American Medical Association, 289, 30953105.Google Scholar
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.Google Scholar
Kessler, R. C., McGonagle, K. A., Swartz, M. S., Blazer, D. G., & Nelson, C. B. (1993). Sex and depression in the National Comorbidity Survey: I. Lifetime prevalence, chronicity and recurrence. Journal of Affective Disorders, 29, 8596.Google Scholar
Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C. B. (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry, 52, 10481060.Google Scholar
Krupnick, J. L., Green, B. L., Stockton, P., Miranda, J., Krause, E., & Mete, M. (2008). Group interpersonal psychotherapy for low-income women with posttraumatic stress disorder. Psychotherapy Research, 18, 497507.Google Scholar
Lai, C. Q., Tucker, K. L., Choudhry, S., Parnell, L. D., Mattei, J., García-Bailo, B., et al. (2009). Population admixture associated with disease prevalence in the Boston Puerto Rican health study. Human Genetics, 125, 199209.Google Scholar
Laucht, M., Treutlein, J., Blomeyer, D., Buchmann, A. F., Schmid, B., Becker, K., et al. (2009). Interaction between the 5-HTTLPR serotonin transporter polymorphism and environmental adversity for mood and anxiety psychopathology: Evidence from a high-risk community sample of young adults. International Journal of Neuropsychopharmacology, 12, 737747.CrossRefGoogle ScholarPubMed
Lenze, E. J., Dew, M. A., Mazumdar, S., Begley, A. E., Cornes, C., Miller, M. D., et al. (2002). Combined pharmacotherapy and psychotherapy as maintenance treatment for late-life depression: Effects on social adjustment. American Journal of Psychiatry, 159, 466468.CrossRefGoogle ScholarPubMed
Lesch, K. P., Bengel, D., Heiles, A., Sabol, S. Z., Greenberg, S., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Little, R. J. A., & Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's Causal Model. Psychological Methods, 3, 147159.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behavior and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle Scholar
Mandelli, L., Marino, E., Pirovano, A., Calati, R., Zanardi, R., Colombo, C., et al. (2009). Interaction between SERTPR and stressful life events on response to antidepressant treatment. European Neuropsychopharmacology, 19, 6467.Google Scholar
McGuffin, P., Katz, R., Watkins, S., & Rutherford, J. (1996). A hospital-based twin register of the heritability of DSM-IV unipolar depression. Archives of General Psychiatry, 53, 129.Google Scholar
Mitchell, A. M., Crane, P. A., & Kim, Y. (2008). Perceived stress in survivors of suicide: Psychometric properties of the perceived stress scale. Research in Nursing and Health, 31, 576585.Google Scholar
Morris, D. W., Rush, A. J., Jain, S., Fava, M., Wisniewski, S. R., Balasubramani, G. K., et al. (2007). Diurnal mood variation in outpatients with major depressive disorder: Implications for DSM-V from an analysis of the Sequenced Treatment Alternatives to Relieve Depression Study data. Journal of Clinical Psychiatry, 68, 13391347.Google Scholar
Mufson, L., Moreau, D., Weissman, M., Wickramaratne, P., Martin, J., & Samilov, A. (1994). Modification of interpersonal psychotherapy with depressed adolescents (IPT-A): Phase I and II studies. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 695705.Google Scholar
Mufson, L., Weissman, M., Moreau, D., & Garfinkel, R. (1999). Efficacy of interpersonal psychotherapy for depressed adolescents. Archives of General Psychiatry, 56, 573579.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user's guide (7th ed.). Los Angeles: Author.Google Scholar
Odegerel, Z., Talati, A., Hamilton, S. P., Levinson, D. F., & Weissman, M. M. (2013). Genotyping serotonin transporter polymorphisms 5-HTTLPR and res25531 in European- and African American subjects from the National Institute of Mental Health's Collaborative Center for Genomic Studies. Translational Psychiatry, 3, e307.Google Scholar
Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139, 901916.Google Scholar
Polanczyk, G., Caspi, A., Williams, B., Price, T. S., Danese, A., Sugden, K., et al. (2009). Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: Replication and extension. Archives of General Psychiatry, 66, 978985.Google Scholar
Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.Google Scholar
Regier, D. A., Herschfeld, R. M., Goodwin, F. K., Burke, J. D., Lazar, J. B., & Judd, L. L. (1988). The NIMH depression awareness, recognition, and treatment program: Structure, aims, and scientific basis. American Journal of Psychiatry, 145, 13511357.Google Scholar
Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. Journal of the American Medical Association, 301, 24622471.Google Scholar
Robins, L. N., Cottler, L., Bucholz, K., & Compton, W. (1995). Diagnostic Interview Schedule for DSM–IV. St. Louis, MO: Washington University Press.Google Scholar
Robins, L. N., Helzer, J. E., Croughan, J., & Ratcliff, K.S. (1981). National Institute of Mental Health Diagnostic Interview Schedule: Its history, characteristics, and validity. Archives of General Psychiatry, 38, 381389.Google Scholar
Robins, L. N., Helzer, J. E., Ratcliff, K. S., & Seyfried, W. (1982). Validity of the Diagnostic Interview Schedule, Version II: DSM-III diagnoses. Psychological Medicine, 12, 855870.Google Scholar
Rossello, J., & Bernal, G. (1999). The efficacy of cognitive-behavioral and interpersonal treatments for depression in Puerto Rican adolescents. Journal of Consulting and Clinical Psychology, 67, 734745.Google Scholar
Sadeh, N., Javdani, S., Jackson, J. J., Reynolds, E. K., Potenza, M. N., Gelernter, J., et al. (2010). Serotonin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. Journal of Abnormal Psychology, 119, 604609.Google Scholar
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (1999). Autoradiographic and in situ hybridization localization of corticotrophin-releasing factor 1 and 2 receptors in nonhuman primate brain. Journal of Comparative Neurology, 408, 365377.Google Scholar
Segre, L. S., O'Hara, M. W., Arndt, S., & Stuart, S. (2007). The prevalence of postpartum depression. Social Psychiatry and Psychiatric Epidemiology, 42, 316321.Google Scholar
Smedley, B. D., Stith, A. Y., & Nelson, A. R. (2002). Unequal treatment: Confronting racial and ethnic disparities in health care (Institute of Medicine Report). Washington, DC: National Academy Press.Google Scholar
Spinelli, M. G., & Endicott, J. (2003). Controlled clinical trial of interpersonal psychotherapy versus parenting education program for depressed pregnant women. American Journal of Psychiatry, 160, 555562.Google Scholar
Storch, E. A., Roberti, J. W., & Roth, D. A. (2004). Factor structure, concurrent validity, and internal consistency of the Beck Depression Inventory—Second Edition in a sample of college students. Depression and Anxiety, 19, 187189.Google Scholar
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. American Journal of Psychiatry, 157, 15521562.Google Scholar
Tofighi, D., & MacKinnon, D. P. (2011). R Mediation: An R package for mediation analysis confidence intervals. Behavior Research Methods, 43, 692700.Google Scholar
Toth, S. L., Rogosch, F. A., Oshri, A., Gravener, J., Sturm, R., & Morgan-Lopez, A. (2013). The efficacy of interpersonal psychotherapy for economically disadvantaged mothers. Development and Psychopathology, 25, 10651078.Google Scholar
Tyrka, A. R., Price, L. H., Gelernter, J., Schepker, C., Anderson, G. M., & Carpenter, L.L. (2009). Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects on hypothalamic–pituitary–adrenal axis reactivity. Biological Psychiatry, 66, 681685.Google Scholar
Uher, R. (2011). Genes, environment, and individual differences in responding to treatment for depression. Harvard Review of Psychiatry, 19, 109124.Google Scholar
van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147.Google Scholar
Wang, P. S., Lane, M., Olfson, M., Pincus, H. A., Wells, K. B., & Kessler, R. C. (2005). Twelve-month use of mental health services in the United States. Archives of General Psychiatry, 62, 629640.Google Scholar
Watson, D., & Clark, L. (1984). Negative affectivity: The disposition to experience aversive emotional states. Psychological Bulletin, 96, 465490.Google Scholar
Weiss, E. L., Longhurst, J. G., & Mazure, C. M. (1999). Childhood sexual abuse as a risk factor for depression in women: Psychosocial and neurobiological correlates. American Journal of Psychiatry, 156, 816828.Google Scholar
Weissman, M. M. (1999). Social Adjustment Scale—Self-Report (SAS-SR): User's manual. North Tonawanda, NY: Multi-Health Systems.Google Scholar
Weissman, M. M., & Bothwell, S. (1976). Assessment of social adjustment by patient self-report. Archives of General Psychiatry, 33, 11111115.Google Scholar
Weissman, M. M., Markowitz, J. W., & Klerman, G. L. (2000). Comprehensive guide to interpersonal psychotherapy. New York: Basic Books.Google Scholar
Whiffen, V. E., & Gotlib, I. H. (1993). Comparison of postpartum and nonpostpartum depression: Clinical presentation, psychiatric history, and psychosocial functioning. Journal of Consulting and Clinical Psychology, 61, 485494.Google Scholar
Williams, D. R., & Collins, C. (1995). U.S. socioeconomic and racial differences in health. Annual Review of Sociology, 21, 349386.Google Scholar
Yaeger, R., Avila-Bront, A., Abdul, K., Nolan, P. C., Grann, V. R., Birchette, M. G., et al. (2008). Comparing genetic ancestry and self-described race in African Americans born in the United States and in African. Cancer Epidemiology, Biomarkers & Prevention, 17, 13291338.Google Scholar