Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T02:21:30.915Z Has data issue: false hasContentIssue false

Early life adversity, inflammation, and immune function: An initial test of adaptive response models of immunological programming

Published online by Cambridge University Press:  14 February 2022

Katja Cunningham*
Affiliation:
Department of Psychology, Texas Christian University, Fort Worth, TX, USA
Summer Mengelkoch
Affiliation:
Department of Psychology, Texas Christian University, Fort Worth, TX, USA
Jeffrey Gassen
Affiliation:
Department of Anthropology, Baylor University, Waco, TX, USA
Sarah E. Hill
Affiliation:
Department of Psychology, Texas Christian University, Fort Worth, TX, USA
*
Corresponding author: Katja Cunningham, email: [email protected]

Abstract

Much research indicates that exposure to early life adversity (ELA) predicts chronic inflammatory activity, increasing one’s risk of developing diseases of aging later in life. Despite its costs, researchers have proposed that chronic inflammation may be favored in this context because it would help promote immunological vigilance in environments with an elevated risk of infection and injury. Although intuitively appealing, the assumption that exaggerated inflammatory activity predicts favorable immunological outcomes among those exposed to ELA has not been tested. Here, we seek to address this gap, examining the links between exposure to ELA, inflammation, and immune function. Consistent with others’ work, results revealed that those from low socioeconomic status (SES) childhood environments exhibited exaggerated unstimulated inflammatory activity relative to what was observed among those from higher SES childhood environments. Further, results revealed that – although levels of inflammation predicted the magnitude of immunological responses in those from higher SES backgrounds – for those who grew up in low SES environments, higher levels of inflammation were unrelated to the magnitude of immunological responses. Results suggest that exaggerated inflammatory activity in the context of ELA may not predict improved ability to manage acute immunological threats.

Type
Special Issue Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, N., Rose, T., Hawker, J., Violato, M., O’Brien, S., Barr, B., Howard, V. J. K., Whitehead, M., Harris, R., & Taylor-Robinson, D. C (2018). Relationship between socioeconomic status and gastrointestinal infections in developed countries: A systematic review and meta-analysis. PLOS ONE, 13(1), e0191633. https://doi.org/10.1371/journal.pone.0191633 CrossRefGoogle ScholarPubMed
Adler, N., Boyce, T., Chesney, M., Cohen, S., Folkman, S., Kahn, R., & Syme, S. (1994). Socioeconomic status and health: The challenge of the gradient. American Psychologist, 49(1), 1524. https://doi.org/10.1037/0003-066x.49.1.15 CrossRefGoogle ScholarPubMed
Azab, S., Sherief, L., Saleh, S., Elsaeed, W., Elshafie, M., & Abdelsalam, S. (2014). Impact of the socioeconomic status on the severity and outcome of community-acquired pneumonia among Egyptian children: a cohort study. Infectious Diseases of Poverty, 3(1), 14, https://doi.org/10.1186/2049-9957-3-14 CrossRefGoogle ScholarPubMed
Azad, M., Lissitsyn, Y., Miller, G., Becker, A., HayGlass, K., & Kozyrskyj, A. (2012). Influence of socioeconomic status trajectories on innate immune responsiveness in children. PLOS ONE, 7(6), e38669. https://doi.org/10.1371/journal.pone.0038669 CrossRefGoogle ScholarPubMed
Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C., & Mondelli, V. (2015). Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Molecular Psychiatry, 21(5), 642649. https://doi.org/10.1038/mp.2015.67 CrossRefGoogle ScholarPubMed
Belsky, J., Schlomer, G., & Ellis, B. (2012). Beyond cumulative risk: Distinguishing harshness and unpredictability as determinants of parenting and early life history strategy. Developmental Psychology, 48(3), 662673. https://doi.org/10.1037/a0024454 CrossRefGoogle ScholarPubMed
Brown, D. W., Anda, R. F., Tiemeier, H., Felitti, V. J., Edwards, V. J., Croft, J. B., & Giles, W. H. (2009). Adverse childhood experiences and the risk of premature mortality. American Journal of Preventive Medicine, 37(5), 389396. https://doi.org/10.1016/j.amepre.2009.06.021 CrossRefGoogle ScholarPubMed
Bunea, I., Szentágotai-Tătar, A., & Miu, A. (2017). Early-life adversity and cortisol response to social stress: A meta-analysis. Translational Psychiatry, 7(12), 1274, https://doi.org/10.1038/s41398-017-0032-3,CrossRefGoogle ScholarPubMed
Carlsson, E., Frostell, A., Ludvigsson, J., & Faresjö, M. (2014). Psychological stress in children may alter the immune response. The Journal of Immunology, 192(5), 20712081. https://doi.org/10.4049/jimmunol.1301713 CrossRefGoogle ScholarPubMed
Carpenter, L., Gawuga, C., Tyrka, A., Lee, J., Anderson, G., & Price, L. (2010). Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology, 35(13), 26172623. https://doi.org/10.1038/npp.2010.159 CrossRefGoogle ScholarPubMed
Chan, H. T., Kedzierska, K., O'mullane, J., Crowe, S. M., & Jaworowski, A. (2001). Quantifying complement-mediated phagocytosis by human monocyte-derived macrophages. Immunology and Cell Biology, 79(5), 429435.CrossRefGoogle ScholarPubMed
Chen, E., Matthews, K., & Boyce, W. (2002). Socioeconomic differences in children’s health: How and why do these relationships change with age? Psychological Bulletin, 128(2), 295329. https://doi.org/10.1037/0033-2909.128.2.295 CrossRefGoogle ScholarPubMed
Chen, E., Miller, G. E., Kobor, M. S., & Cole, S. W. (2011). Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Molecular Psychiatry, 16(7), 729737.CrossRefGoogle ScholarPubMed
Chen, E., Shalowitz, M. U., Story, R. E., Ehrlich, K. B., Levine, C. S., Hayen, R., Leigh, A. K. K., & Miller, G. E. (2016). Dimensions of socioeconomic status and childhood asthma outcomes: Evidence for distinct behavioral and biological associations. Psychosomatic Medicine, 78(9), 10431052. https://doi.org/10.1097/psy.0000000000000392 CrossRefGoogle ScholarPubMed
Chiba, S., Hisamatsu, T., Suzuki, H., Mori, K., Kitazume, M. T., Shimamura, K., & Kanai, T. (2017). Glycolysis regulates LPS-induced cytokine production in M2 polarized human macrophages. Immunology Letters, 183(1), 1723.CrossRefGoogle ScholarPubMed
Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J., & Gusovsky, F. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry, 274(16), 1068910692.10.1074/jbc.274.16.10689CrossRefGoogle ScholarPubMed
Chung, H. Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A., Carter, C., Byung, P. Y., & Leeuwenburgh, C. (2009). Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Research Reviews, 8(1), 1830. https://doi.org/10.1016/j.arr.2008.07.002 CrossRefGoogle ScholarPubMed
Cicchetti, D. (2016). Socioemotional, personality, and biological development: Illustrations from a multilevel developmental psychopathology perspective on child maltreatment. Annual Review of Psychology, 67(1), 187211. https://doi.org/10.1146/annurev-psych-122414-033259 CrossRefGoogle ScholarPubMed
Coelho, R., Viola, T., Walss-Bass, C., Brietzke, E., & Grassi-Oliveira, R. (2013). Childhood maltreatment and inflammatory markers: A systematic review. Acta Psychiatrica Scandinavica, 129(3), 180192. https://doi.org/10.1111/acps.12217 CrossRefGoogle ScholarPubMed
Cohen, S., Doyle, W., Turner, R., Alper, C., & Skoner, D. (2004). Childhood socioeconomic status and host resistance to infectious illness in adulthood. Psychosomatic Medicine, 66(4), 553558. https://doi.org/10.1097/01.psy.0000126200.05189.d3 CrossRefGoogle ScholarPubMed
Cohen, S., Janicki-Deverts, D., Doyle, W., Miller, G., Frank, E., Rabin, B.Turner, R. (2012). Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proceedings of The National Academy of Sciences of The United States of America, 109(16), 59955999. https://doi.org/10.1073/pnas.1118355109 CrossRefGoogle ScholarPubMed
Colich, N., Rosen, M., Williams, E., & McLaughlin, K. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146(9), 721764. https://doi.org/10.1037/bul0000270 CrossRefGoogle ScholarPubMed
Conner, E., & Grisham, M. (1996). Inflammation, free radicals, and antioxidants. Nutrition, 12(4), 274277. https://doi.org/10.1016/s0899-9007(96)00000-8 CrossRefGoogle ScholarPubMed
Corwin, E. J., Guo, Y., Pajer, K., Lowe, N., McCarthy, D., Schmiege, S., Weber, M., Pace, T., & Stafford, B. (2013). Immune dysregulation and glucocorticoid resistance in minority and low income pregnant women. Psychoneuroendocrinology, 38(9), 17861796. https://doi.org/10.1016/j.psyneuen.2013.02.015 CrossRefGoogle ScholarPubMed
Crosswell, A., Bower, J., & Ganz, P. (2014). Childhood adversity and inflammation in breast cancer survivors. Psychosomatic Medicine, 76(3), 208214. https://doi.org/10.1097/psy.0000000000000041 CrossRefGoogle ScholarPubMed
Cuijpers, P., Smit, F., Unger, F., Stikkelbroek, Y., ten Have, M., & de Graaf, R. (2011). The disease burden of childhood adversities in adults: A population-based study. Child Abuse and Neglect, 35(11), 937945. https://doi.org/10.1016/j.chiabu.2011.06.005 CrossRefGoogle ScholarPubMed
Cutuli, J., Ahumada, S., Herbers, J., Lafavor, T., Masten, A., & Oberg, C. (2016). Adversity and children experiencing family homelessness: implications for health. Journal of Children and Poverty, 23(1), 4155. https://doi.org/10.1080/10796126.2016.1198753 CrossRefGoogle ScholarPubMed
Dale, D. C., Boxer, L., & Liles, W. C. (2008). The phagocytes: Neutrophils and monocytes. Blood, The Journal of the American Society of Hematology, 112(4), 935945.Google ScholarPubMed
Del Giudice, M., Ellis, B., & Shirtcliff, E. (2011). The adaptive calibration model of stress responsivity. Neuroscience and Biobehavioral Reviews, 35(7), 15621592. https://doi.org/10.1016/j.neubiorev.2010.11.007 CrossRefGoogle ScholarPubMed
Dinarello, C. (2000). Proinflammatory cytokines. Chest, 118(2), 503508. https://doi.org/10.1378/chest.118.2.503 CrossRefGoogle ScholarPubMed
Dong, M., Giles, W., Felitti, V., Dube, S., Williams, J., Chapman, D., & Anda, R. (2004). Insights into causal pathways for ischemic heart disease: Adverse childhood experiences study. Circulation, 110(13), 17611766. https://doi.org/10.1161/01.cir.0000143074.54995.7f CrossRefGoogle ScholarPubMed
Dowd, J., & Aiello, A. (2009). Socioeconomic differentials in immune response in the U.S. Epidemiology, 20(6), 902908. https://doi.org/10.1097/ede.0b013e3181bb5302 CrossRefGoogle Scholar
Dube, S., Fairweather, D., Pearson, W., Felitti, V., Anda, R., & Croft, J. (2009). Cumulative childhood stress and autoimmune diseases in adults. Psychosomatic Medicine, 71(2), 243250. https://doi.org/10.1097/psy.0b013e3181907888 CrossRefGoogle ScholarPubMed
Ehrlich, K., Ross, K., Chen, E., & Miller, G. (2016). Testing the biological embedding hypothesis: Is early life adversity associated with a later proinflammatory phenotype? Development and Psychopathology, 28(4pt2), 12731283. https://doi.org/10.1017/S0954579416000845 CrossRefGoogle ScholarPubMed
Ellis, B., Figueredo, A., Brumbach, B., & Schlomer, G. (2009). Fundamental dimensions of environmental risk. Human Nature, 20(2), 204268. https://doi.org/10.1007/s12110-009-9063-7 CrossRefGoogle ScholarPubMed
Elwenspoek, M., Kuehn, A., Muller, C., & Turner, J. (2017). The effects of early life adversity on the immune system. Psychoneuroendocrinology, 82, 140154. https://doi.org/10.1016/j.psyneuen.2017.05.012 CrossRefGoogle ScholarPubMed
Fagundes, C., & Way, B. (2014). Early-life stress and adult inflammation. Current Directions in Psychological Science, 23(4), 277283. https://doi.org/10.1177/0963721414535603 CrossRefGoogle Scholar
Faresjo, M. (2015). The link between psychological stress and autoimmune response in children. Critical Reviews in Immunology, 35(2), 117134. https://doi.org/10.1615/critrevimmunol.2015013255 CrossRefGoogle ScholarPubMed
Felitti, V., Anda, R., Nordenberg, D., Williamson, D., Spitz, A., Edwards, V., Koss, M., & Marks, J. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. American Journal of Preventive Medicine, 14(4), 245258. https://doi.org/10.1016/s0749-3797(98)00017-8 CrossRefGoogle ScholarPubMed
Fenton, M. J., & Golenbock, D. T. (1998). LPS-binding proteins and receptors. Journal of Leukocyte Biology, 64(1), 2532.CrossRefGoogle ScholarPubMed
Fiscella, K., Franks, P., Gold, M., & Clancy, C. (2000). Inequality in quality: Addressing socioeconomic, racial, and ethnic disparities in health care. JAMA, 283(19), 2579. https://doi.org/10.1001/jama.283.19.2579 CrossRefGoogle ScholarPubMed
Flaherty, E., Thompson, R., Litrownik, A., Theodore, A., English, D., Black, M., Wike, T., Whimper, L., Runyan, D., & Dubowitz, H. (2006). Effect of early childhood adversity on child health. Archives of Pediatrics & Adolescent Medicine, 160(12), 1232. https://doi.org/10.1001/archpedi.160.12.1232 CrossRefGoogle ScholarPubMed
Flaherty, E., Thompson, R., Litrownik, A., Zolotor, A., Dubowitz, H., Runyan, D., English, D., Everson, M. (2009). Adverse childhood exposures and reported child health at age 12. Academic Pediatrics, 9(3), 150156. https://doi.org/10.1016/j.acap.2008.11.003 CrossRefGoogle ScholarPubMed
Flannagan, R. S., Jaumouillé, V., & Grinstein, S. (2012). The cell biology of phagocytosis. Annual Review of Pathology: Mechanisms of Disease, 7(1), 6198.CrossRefGoogle ScholarPubMed
Friedman, E., Karlamangla, A., Gruenewald, T., Koretz, B., & Seeman, T. (2015). Early life adversity and adult biological risk profiles. Psychosomatic Medicine, 77(2), 176185. https://doi.org/10.1097/psy.0000000000000147 CrossRefGoogle ScholarPubMed
Galobardes, B., Lynch, J., & Smith, G. (2008). Is the association between childhood socioeconomic circumstances and cause-specific mortality established? update of a systematic review. Journal of Epidemiology and Community Health, 62(5), 387390. https://doi.org/10.1136/jech.2007.065508 CrossRefGoogle ScholarPubMed
Gangestad, S., & Grebe, N. (2014). Pathogen avoidance within an integrated immune system: Multiple components with distinct costs and benefits. Evolutionary Behavioral Sciences, 8(4), 226234. https://doi.org/10.1037/ebs0000023 CrossRefGoogle Scholar
Gassen, J., Prokosch, M. L., Eimerbrink, M. J., Proffitt-Leyva, R., White, J. D., Peterman, J. L., Burgess, A., Cheek, D. J., Kreutzer, A., Nicolas, S. C., Boehm, G. W., & Hill, S. E. (2019). Inflammation predicts decision-making characterized by impulsivity, present focus, and an inability to delay gratification. Scientific Reports, 9(1), 110.CrossRefGoogle Scholar
Gassen, J., White, J., Peterman, J., Mengelkoch, S., Proffitt-Leyva, R., Prokosch, M. L., Eimerbrink, M. J., Brice, K., Cheek, D. J., Boehm, G. W., & Hill, S. E. (2021). Sex differences in the impact of childhood socioeconomic status on immune function. Scientific Reports, 11(1), 9827, https://doi.org/10.1038/s41598-021-89413-y CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L. (2011). The canary in the coalmine: The sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience and Biobehavioral Reviews, 35(3), 794803. https://doi.org/10.1016/j.neubiorev.2010.09.013 CrossRefGoogle ScholarPubMed
Genser, B., Cooper, P., Yazdanbaksh, M., Barreto, M., & Rodrigues, L. (2007). A guide to modern statistical analysis of immunological data. BMC Immunology, 8(1), 27. https://doi.org/10.1186/1471-2172-8-27 CrossRefGoogle Scholar
Gessani, S., Testa, U., Varano, B., Di Marzio, P., Borghi, P., Conti, L., Barberi, T., Tritarelli, E., Martucci, R., & Seripa, D. (1993). Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages. Role of LPS receptors. The Journal of Immunology, 151(7), 37583766.Google ScholarPubMed
Gilbert, L., Breiding, M., Merrick, M., Thompson, W., Ford, D., Dhingra, S., & Parks, S. (2015). Childhood adversity and adult chronic disease. American Journal of Preventive Medicine, 48(3), 345349. https://doi.org/10.1016/j.amepre.2014.09.006 CrossRefGoogle ScholarPubMed
Gluckman, P., & Hanson, M. (2006). The conceptual basis for the developmental origins of health and disease. In Gluckman, P., & Hanson, M. (Eds.), Developmental origins of health and disease. Cambridge University Press, New York, NY: 3350. https://doi.org/10.1017/cbo9780511544699.004 CrossRefGoogle Scholar
Gottman, J., & Katz, L. (1989). Effects of marital discord on young children’s peer interaction and health. Developmental Psychology, 25(3), 373381. https://doi.org/10.1037/0012-1649.25.3.373 CrossRefGoogle Scholar
Griskevicius, V., Delton, A. W., Robertson, T. E., & Tybur, J. M. (2011). Environmental contingency in life history strategies: the influence of mortality and socioeconomic status on reproductive timing. Journal of Personality and Social Psychology, 100(2), 241254.CrossRefGoogle ScholarPubMed
Guha, M., & Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cellular signalling, 13(2), 8594.CrossRefGoogle ScholarPubMed
Gulati, K., Guhathakurta, S., Joshi, J., Rai, N., & Ray, A. (2016). Cytokines and their role in health and disease: A brief overview. MOJ Immunology, 4(2, https://doi.org/10.15406/moji.2016.04.00121 Google Scholar
Gupta, R., de Wit, M., & McKeown, D. (2007). The impact of poverty on the current and future health status of children. Paediatrics and Child Health, 12(8), 667672. https://doi.org/10.1093/pch/12.8.667 CrossRefGoogle ScholarPubMed
Hill, S. E., Prokosch, M. L., DelPriore, D. J., Griskevicius, V., & Kramer, A. (2016). Low childhood socioeconomic status promotes eating in the absence of energy need. Psychological Science, 27(3), 354364.10.1177/0956797615621901CrossRefGoogle ScholarPubMed
Hillis, S., Mercy, J., Amobi, A., & Kress, H. (2016). Global prevalence of past-year violence against children: A systematic review and minimum estimates. Pediatrics, 137(3), e20154079. https://doi.org/10.1542/peds.2015-4079 CrossRefGoogle ScholarPubMed
Hostinar, C., Ross, K., Chan, M., Chen, E., & Miller, G. (2017). Threat vigilance and socioeconomic disparities in metabolic health. Development and Psychopathology, 29(5), 17211733. https://doi.org/10.1017/s0954579417001353 CrossRefGoogle ScholarPubMed
Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. Science, 327(5963), 291295.CrossRefGoogle ScholarPubMed
Janusek, L., Tell, D., Gaylord-Harden, N., & Mathews, H. (2017). Relationship of childhood adversity and neighborhood violence to a proinflammatory phenotype in emerging adult African American men: An epigenetic link. Brain, Behavior, and Immunity, 60, 126135. https://doi.org/10.1016/j.bbi.2016.10.006 CrossRefGoogle Scholar
John-Henderson, N., Marsland, A., Kamarck, T., Muldoon, M., & Manuck, S. (2016). Childhood socioeconomic status and the occurrence of recent negative life events as predictors of circulating and stimulated levels of interleukin-6. Psychosomatic Medicine, 78(1), 91101. https://doi.org/10.1097/psy.0000000000000262 CrossRefGoogle ScholarPubMed
Kantari, C., Pederzoli-Ribeil, M., & Witko-Sarsat, V. (2008). The role of neutrophils and monocytes in innate immunity. Trends in Innate Immunity, 15, 118146.CrossRefGoogle ScholarPubMed
Kato, T., & Kitagawa, S. (2006). Regulation of neutrophil functions by proinflammatory cytokines. International Journal of Hematology, 84(3), 205209. https://doi.org/10.1532/ijh97.06141 CrossRefGoogle ScholarPubMed
Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology, 11(5), 373384.CrossRefGoogle ScholarPubMed
Kelly-Irving, M., Lepage, B., Dedieu, D., Bartley, M., Blane, D., Grosclaude, P., Lang, T., & Delpierre, C. (2013). Adverse childhood experiences and premature all-cause mortality. European Journal of Epidemiology, 28(9), 721734. https://doi.org/10.1007/s10654-013-9832-9 CrossRefGoogle ScholarPubMed
Kerker, B., Zhang, J., Nadeem, E., Stein, R., Hurlburt, M., Heneghan, A., Landsverk, J. & Horowitz, S. M. (2015). Adverse childhood experiences and mental health, chronic medical conditions, and development in young children. Academic Pediatrics, 15(5), 510517. https://doi.org/10.1016/j.acap.2015.05.005 CrossRefGoogle ScholarPubMed
Khansari, N., Shakiba, Y., & Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age- related diseases and cancer. Recent Patents on Inflammation and Allergy Drug Discovery, 3(1), 7380. https://doi.org/10.2174/187221309787158371 CrossRefGoogle ScholarPubMed
Kircanski, K., Sisk, L., Ho, T., Humphreys, K., King, L., Colich, N., Ordaz, S., & Gotlib, I. (2019). Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty. Development and Psychopathology, 31(3), 10111022. https://doi.org/10.1017/s0954579419000555 CrossRefGoogle ScholarPubMed
Kittleson, M., Meoni, L., Wang, N., Chu, A., Ford, D., & Klag, M. (2006). Association of childhood socioeconomic status with subsequent coronary heart disease in physicians. Archives of Internal Medicine, 166(21), 2356. https://doi.org/10.1001/archinte.166.21.2356 CrossRefGoogle ScholarPubMed
Kline, R. (2016). Principles and practice of structural equation modeling. Guilford Press, New York, NY.Google Scholar
Krishnamurthy, V. M., Quinton, L. J., Estroff, L. A., Metallo, S. J., Isaacs, J. M., Mizgerd, J. P., & Whitesides, G. M. (2006). Promotion of opsonization by antibodies and phagocytosis of Gram-positive bacteria by a bifunctional polyacrylamide. Biomaterials, 27(19), 36633674.Google ScholarPubMed
Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen recognition by the innate immune system. International reviews of immunology, 30(1), 1634.10.3109/08830185.2010.529976CrossRefGoogle ScholarPubMed
Langstein, J., Becke, F. M., Söllner, L., Krause, G., Brockhoff, G., Kreutz, M., Andreesen, R., & Schwarz, H. (2000). Comparative analysis of CD137 and LPS effects on monocyte activation, survival, and proliferation. Biochemical and biophysical research communications, 273(1), 117122.CrossRefGoogle ScholarPubMed
Larson, N., Story, M., & Nelson, M. (2009). Neighborhood environments: Disparities in access to healthy foods in the U.S. American Journal of Preventive Medicine, 36(1), 7481.e10. https://doi.org/10.1016/j.amepre.2008.09.025 CrossRefGoogle ScholarPubMed
Lê-Scherban, F., Brenner, A., Hicken, M., Needham, B., Seeman, T., Sloan, R., Wang, X., &Diez Roux, A. V. (2018). Child and adult socioeconomic status and the cortisol response to acute stress: Evidence from the Multi-Ethnic Study of Atherosclerosis. Psychosomatic Medicine, 80(2), 184192. https://doi.org/10.1097/psy.0000000000000543 CrossRefGoogle ScholarPubMed
Liu, R., Aiello, A., Mensah, F., Gasser, C., Rueb, K., Cordell, B., Juonala, M., Wake, M., & Bugner, D. P. (2017). Socioeconomic status in childhood and C reactive protein in adulthood: A systematic review and meta-analysis. Journal of Epidemiology and Community Health, 71(8), 817826. https://doi.org/10.1136/jech-2016-208646 CrossRefGoogle Scholar
Lockwood, K., John-Henderson, N., & Marsland, A. (2018). Early life socioeconomic status associates with interleukin-6 responses to acute laboratory stress in adulthood. Physiology & Behavior, 188, 212220. https://doi.org/10.1016/j.physbeh.2018.02.016 CrossRefGoogle ScholarPubMed
Lu, A., Petrullo, L., Carrera, S., Feder, J., Schneider‐Crease, I., & Snyder‐Mackler, N. (2019). Developmental responses to early‐life adversity: Evolutionary and mechanistic perspectives. Evolutionary Anthropology: Issues, News, and Reviews, 28(5), 249266. https://doi.org/10.1002/evan.21791 CrossRefGoogle ScholarPubMed
Lu, Y. C., Yeh, W. C., & Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42(2), 145151.10.1016/j.cyto.2008.01.006CrossRefGoogle Scholar
Maecker, H., McCoy, J., & Nussenblatt, R. (2012). Standardizing immunophenotyping for the Human Immunology Project. Nature Reviews Immunology, 12(3), 191200. https://doi.org/10.1038/nri3158 CrossRefGoogle ScholarPubMed
McDade, T., Georgiev, A., & Kuzawa, C. (2016). Trade-offs between acquired and innate immune defenses in humans. Evolution, Medicine, and Public Health, 2016(1), 116. https://doi.org/10.1093/emph/eov033 CrossRefGoogle ScholarPubMed
McEwen, B. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of The National Academy of Sciences of The United States of America, 109(2), 1718017185. https://doi.org/10.1073/pnas.1121254109 CrossRefGoogle ScholarPubMed
Mechanic, D., & Hansell, S. (1989). Divorce, family conflict, and adolescents' well-being. Journal of Health and Social Behavior, 30(1), 105. https://doi.org/10.2307/2136916 CrossRefGoogle ScholarPubMed
Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428435. https://doi.org/10.1038/nature07201 CrossRefGoogle ScholarPubMed
Medzhitov, R. (2010). Inflammation 2010: New adventures of an old flame. Cell, 140(6), 771776. https://doi.org/10.1016/j.cell.2010.03.006 CrossRefGoogle ScholarPubMed
Milaniak, I., & Jaffee, S. (2019). Childhood socioeconomic status and inflammation: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 78, 161176. https://doi.org/10.1016/j.bbi.2019.01.018 CrossRefGoogle ScholarPubMed
Miller, G., & Chen, E. (2007). Unfavorable socioeconomic conditions in early life presage expression of proinflammatory phenotype in adolescence. Psychosomatic Medicine, 69(5), 402409. https://doi.org/10.1097/psy.0b013e318068fcf9 CrossRefGoogle ScholarPubMed
Miller, G., & Chen, E. (2010). Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychological Science, 21(6), 848856. https://doi.org/10.1177/0956797610370161 CrossRefGoogle ScholarPubMed
Miller, G., & Chen, E. (2013). The biological residue of childhood poverty. Child Development Perspectives, 7(2), 6773. https://doi.org/10.1111/cdep.12021 CrossRefGoogle ScholarPubMed
Miller, G., Chen, E., Fok, A., Walker, H., Lim, A., Nicholls, E., Cole, S., & Kobor, M. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proceedings of The National Academy of Sciences of The United States of America, 106(34), 1471614721. https://doi.org/10.1073/pnas.0902971106 CrossRefGoogle Scholar
Miller, G., Chen, E., & Parker, K. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin, 137(6), 959997. https://doi.org/10.1037/a0024768 CrossRefGoogle Scholar
Miller, G., Murphy, M., Cashman, R., Ma, R., Ma, J., Arevalo, J., Kobor, M., & Cole, S. (2014). Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain, Behavior, and Immunity, 41, 191199. https://doi.org/10.1016/j.bbi.2014.05.016 CrossRefGoogle ScholarPubMed
Mittal, C., Griskevicius, V., Simpson, J., Sung, S., & Young, E. (2015). Cognitive adaptations to stressful environments: When childhood adversity enhances adult executive function. Journal of Personality and Social Psychology, 109(4), 604621. https://doi.org/10.1037/pspi0000028 CrossRefGoogle ScholarPubMed
Murphy, K., & Weaver, C. (2016). Janeway’s immunobiology (9th ed.). Taylor & Francis, New York.CrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O. (1998-2012). Mplus user’s guide (7th ed.). Muthén & Muthén, Los Angeles, CA.Google Scholar
Nemeroff, C. (2016). Paradise Lost: The neurobiological and clinical consequences of child abuse and neglect. Neuron, 89(5), 892909. https://doi.org/10.1016/j.neuron.2016.01.019 CrossRefGoogle ScholarPubMed
Nettle, D., Frankenhuis, W., & Rickard, I. (2013). The evolution of predictive adaptive responses in human life history. Proceedings of The Royal Society B: Biological Sciences, 280(1766), 20131343. https://doi.org/10.1098/rspb.2013.1343 CrossRefGoogle ScholarPubMed
Nielsen, N., Hansen, A., Simonsen, J., & Hviid, A. (2011). Stressful life events in childhood and risk of infectious disease hospitalization. European Journal of Pediatrics, 171(1), 173179. https://doi.org/10.1007/s00431-011-1498-2 CrossRefGoogle ScholarPubMed
Pace, T., Hu, F., & Miller, A. (2007). Cytokine-effects on glucocorticoid receptor function: Relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain, Behavior, and Immunity, 21(1), 919. https://doi.org/10.1016/j.bbi.2006.08.009 CrossRefGoogle ScholarPubMed
Pålsson-McDermott, E. M., & O'Neill, L. A. (2004). Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology, 113(2), 153162.10.1111/j.1365-2567.2004.01976.xCrossRefGoogle ScholarPubMed
Pinter-Wollman, N., Jelić, A., & Wells, N. (2018). The impact of the built environment on health behaviours and disease transmission in social systems. Philosophical Transactions of The Royal Society B: Biological Sciences, 373(1753), 20170245. https://doi.org/10.1098/rstb.2017.0245 CrossRefGoogle ScholarPubMed
Poulton, R., Caspi, A., Milne, B., Thomson, W., Taylor, A., Sears, M., & Moffitt, T. (2002). Association between children’s experience of socioeconomic disadvantage and adult health: A life-course study. The Lancet, 360(9346), 16401645. https://doi.org/10.1016/s0140-6736(02)11602-3 CrossRefGoogle ScholarPubMed
Rasmussen, L., Moffitt, T., Eugen-Olsen, J., Belsky, D., Danese, A., Harrington, H., Houts, R., Poulton, R., Sugden, K., Williams, B., & Caspi, A. (2018). Cumulative childhood risk is associated with a new measure of chronic inflammation in adulthood. Journal of Child Psychology and Psychiatry, 60(2), 199208. https://doi.org/10.1111/jcpp.12928 CrossRefGoogle ScholarPubMed
Reiss, F., Meyrose, A., Otto, C., Lampert, T., Klasen, F., & Ravens-Sieberer, U. (2019). Socioeconomic status, stressful life situations and mental health problems in children and adolescents: Results of the German BELLA cohort-study. PLOS ONE, 14(3), e0213700. https://doi.org/10.1371/journal.pone.0213700 CrossRefGoogle ScholarPubMed
Repetti, R., Taylor, S., & Seeman, T. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128(2), 330366. https://doi.org/10.1037/0033-2909.128.2.330 CrossRefGoogle ScholarPubMed
Rickard, I., Frankenhuis, W., & Nettle, D. (2014). Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspectives on Psychological Science, 9(1), 315. https://doi.org/10.1177/1745691613513467 CrossRefGoogle ScholarPubMed
Robles, T. (2020). Annual Research Review: Social relationships and the immune system during development. Journal of Child Psychology and Psychiatry, 62(5), 539559. https://doi.org/10.1111/jcpp.13350 CrossRefGoogle ScholarPubMed
Roubinov, D., Hagan, M., Boyce, W., Adler, N., & Bush, N. (2018). Family socioeconomic status, cortisol, and physical health in early childhood: The role of advantageous neighborhood characteristics. Psychosomatic Medicine, 80(5), 492501. https://doi.org/10.1097/psy.0000000000000585 CrossRefGoogle ScholarPubMed
Schickedanz, A., Escarce, J., Halfon, N., Sastry, N., & Chung, P. (2019). Adverse childhood experiences and household out-of-pocket healthcare costs. American Journal of Preventive Medicine, 56(5), 698707. https://doi.org/10.1016/j.amepre.2018.11.019 CrossRefGoogle ScholarPubMed
Schmeer, K., & Yoon, A. (2016). Socioeconomic status inequalities in low-grade inflammation during childhood. Archives of Disease in Childhood, 101(11), 10431047. https://doi.org/10.1136/archdischild-2016-310837 CrossRefGoogle ScholarPubMed
Schreier, H., Roy, L., Frimer, L., & Chen, E. (2014). Family chaos and adolescent inflammatory profiles: The moderating role of socioeconomic status. Psychosomatic Medicine, 76(6), 460467. https://doi.org/10.1097/psy.0000000000000078 CrossRefGoogle ScholarPubMed
Segerstrom, S. (2000). Personality and the immune system: Models, methods, and mechanisms. Annals of Behavioral Medicine, 22(3), 180190. https://doi.org/10.1007/bf02895112 CrossRefGoogle ScholarPubMed
Shakiba, N., Ellis, B., Bush, N., & Boyce, W. (2019). Biological sensitivity to context: A test of the hypothesized U-shaped relation between early adversity and stress responsivity. Development and Psychopathology, 32(2), 641660. https://doi.org/10.1017/s0954579419000518 CrossRefGoogle Scholar
Shalev, I., Hastings, W., Etzel, L., Israel, S., Russell, M., Hendrick, K., Zinobile, M., & Siegel, S. R. (2020). Investigating the impact of early-life adversity on physiological, immune, and gene expression responses to acute stress: A pilot feasibility study. PLOS ONE, 15(4), e0221310. https://doi.org/10.1371/journal.pone.0221310 CrossRefGoogle ScholarPubMed
Sharif, O., Bolshakov, V. N., Raines, S., Newham, P., & Perkins, N. D. (2007). Transcriptional profiling of the LPS induced NF-κB response in macrophages. BMC immunology, 8(1), 117.CrossRefGoogle ScholarPubMed
Shonkoff, J., Boyce, W., & McEwen, B. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities. JAMA, 301(21), 2252. https://doi.org/10.1001/jama.2009.754 CrossRefGoogle ScholarPubMed
Spencer, N., & Acheson, D. (2000). Poverty and child health in developed countries. In Poverty and child health (2nd ed.). CRC Press London.Google Scholar
Stepanikova, I., Baker, E., Oates, G., Acharya, S., Uddin, J., Thon, V., Svancara, J., & Kukla, L. (2018). Perinatal maternal stress and susceptibility to infectious diseases in later childhood: An early life programming perspective. The Journal of Psychology, 153(1), 6788. https://doi.org/10.1080/00223980.2018.1483311 CrossRefGoogle ScholarPubMed
Suecoff, S., Avner, J., Chou, K., & Crain, E. (1999). A comparison of New York City playground hazards in high- and low-income areas. Archives of Pediatrics and Adolescent Medicine, 153(4), 363366, https://doi.org/10.1001/archpedi.153.4.363 CrossRefGoogle ScholarPubMed
Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805820.10.1016/j.cell.2010.01.022CrossRefGoogle ScholarPubMed
Taylor, S. (2010). Mechanisms linking early life stress to adult health outcomes. Proceedings of The National Academy of Sciences of The United States of America, 107(19), 85078512. https://doi.org/10.1073/pnas.1003890107 CrossRefGoogle ScholarPubMed
Thayer, Z., Rutherford, J., & Kuzawa, C. (2020). The maternal nutritional buffering model: An evolutionary framework for pregnancy nutritional intervention. Evolution, Medicine, and Public Health, 2020(1), 1427. https://doi.org/10.1093/emph/eoz037 CrossRefGoogle ScholarPubMed
Timothy, A., Benegal, V., Shankarappa, B., Saxena, S., Jain, S., & Purushottam, M. (2019). Influence of early adversity on cortisol reactivity, SLC6A4 methylation and externalizing behavior in children of alcoholics. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 94, 109649. https://doi.org/10.1016/j.pnpbp.2019.109649 CrossRefGoogle ScholarPubMed
Tough, D. F., Sun, S., & Sprent, J. (1997). T cell stimulation in vivo by lipopolysaccharide (LPS). The Journal of Experimental Medicine, 185(12), 20892094.CrossRefGoogle Scholar
Trickett, P., Noll, J., Susman, E., Shenk, C., & Putnam, F. (2010). Attenuation of cortisol across development for victims of sexual abuse. Development and Psychopathology, 22(1), 165175. https://doi.org/10.1017/s0954579409990332 CrossRefGoogle ScholarPubMed
Tyrrell, J., Melzer, D., Henley, W., Galloway, T., & Osborne, N. (2013). Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001-2010. Environment International, 59, 328335. https://doi.org/10.1016/j.envint.2013.06.017 CrossRefGoogle ScholarPubMed
Ulmer, A. J., Flad, H. D., Rietschel, T., & Mattern, T. (2000). Induction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxicology, 152(1-3), 3745.CrossRefGoogle Scholar
Wang, Y., & Rhemtulla, M. (2021). Power analysis for parameter estimation in structural equation modeling: A discussion and tutorial. Advances in Methods and Practices in Psychological Science, 4(1), 251524592091825. https://doi.org/10.1177/2515245920918253 CrossRefGoogle Scholar
Wegman, H., & Stetler, C. (2009). A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. Psychosomatic Medicine, 71(8), 805812. https://doi.org/10.1097/psy.0b013e3181bb2b46 CrossRefGoogle ScholarPubMed
Wickrama, K., Lorenz, F., & Conger, R. (1997). Parental support and adolescent physical health status: A latent growth- curve analysis. Journal of Health and Social Behavior, 38(2), 149. https://doi.org/10.2307/2955422 CrossRefGoogle ScholarPubMed
Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., & Mathison, J. C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249(4975), 14311433.10.1126/science.1698311CrossRefGoogle ScholarPubMed
Yeager, M., Pioli, P., & Guyre, P. (2010). Cortisol exerts bi-phasic regulation of inflammation in humans. Dose-Response, 9(3), 332347, https://doi.org/10.2203/dose-response.10-013.yeager,Google Scholar
Yousey-Hindes, K., & Hadler, J. (2011). Neighborhood socioeconomic status and influenza hospitalizations among children: New Haven County, Connecticut, 2003-2010. American Journal of Public Health, 101(9), 17851789. https://doi.org/10.2105/ajph.2011.300224 CrossRefGoogle Scholar
Zhang, T., Bagot, R., Parent, C., Nesbitt, C., Bredy, T., Caldji, C., Fish, E., Anisman, H., Szyf, M., & Meaney, M. (2006). Maternal programming of defensive responses through sustained effects on gene expression. Biological Psychology, 73(1), 7289. https://doi.org/10.1016/j.biopsycho.2006.01.009 CrossRefGoogle ScholarPubMed
Zhu, Y., Chen, X., Zhao, H., Chen, M., Tian, Y., Liu, C., Han, Z., Lin, X., Qiu, J., Xue, G., Shu, H., & Qin, S. (2019). Socioeconomic status disparities affect children’s anxiety and stress-sensitive cortisol awakening response through parental anxiety. Psychoneuroendocrinology, 103, 96103. https://doi.org/10.1016/j.psyneuen.2019.01.00 CrossRefGoogle ScholarPubMed
Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., Cohen, H., Kipnis, J., & Schwartz, M. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9(2), 268275. https://doi.org/10.1038/nn1629 CrossRefGoogle Scholar