Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T02:55:08.436Z Has data issue: false hasContentIssue false

The contributions of early adverse experiences and trajectories of respiratory sinus arrhythmia on the development of neurobehavioral disinhibition among children with prenatal substance exposure

Published online by Cambridge University Press:  09 June 2014

Elisabeth Conradt*
Affiliation:
Women & Infants Hospital of Rhode Island Warren Alpert Medical School of Brown University
David Degarmo
Affiliation:
Oregon Social Learning Center University of Oregon
Phil Fisher
Affiliation:
Oregon Social Learning Center University of Oregon
Beau Abar
Affiliation:
Women & Infants Hospital of Rhode Island
Barry M. Lester
Affiliation:
Women & Infants Hospital of Rhode Island Warren Alpert Medical School of Brown University University of Oregon
Linda L. Lagasse
Affiliation:
Women & Infants Hospital of Rhode Island Warren Alpert Medical School of Brown University University of Oregon
Seetha Shankaran
Affiliation:
Wayne State University School of Medicine
Henrietta Bada
Affiliation:
University of Kentucky College of Medicine
Charles R. Bauer
Affiliation:
University of Miami
Toni M. Whitaker
Affiliation:
University of Tennessee
Jane A. Hammond
Affiliation:
Research Triangle Institute
*
Address correspondence and reprint requests to: Elisabeth Conradt, Brown Center for the Study of Children At Risk, 50 Holden Street, Providence, RI 02908; E-mail: [email protected].

Abstract

Neurobehavioral disinhibition (ND) is a complex condition reflecting a wide range of problems involving difficulties with emotion regulation and behavior control. Respiratory sinus arrhythmia (RSA) is a physiological correlate of emotion regulation that has been studied in a variety of at-risk populations; however, there are no studies of RSA in children with ND. Data were drawn from a prospective longitudinal study of prenatal substance exposure that included 1,073 participants. Baseline RSA and RSA reactivity to an attention-demanding task were assessed at 3, 4, 5, and 6 years. ND was assessed at ages 8/9, 11, and 13/14 years via behavioral dysregulation and executive dysfunction composite measures. Greater exposure to early adversity was related to less RSA reactivity at 3 years, increases in RSA reactivity from ages 3 to 6 years, and increased behavioral dysregulation from ages 8/9 to 13/14. RSA reactivity was examined as a moderator of the association between early adversity and changes in ND. A significant Early Adversity × RSA Reactivity quadratic interaction revealed that children with decelerations in RSA reactivity exhibited increases in behavioral dysregulation, regardless of their exposure to early adversity. However, greater exposure to early adversity was related to greater increases in behavioral dysregulation, but only if children exhibited accelerations in RSA reactivity from ages 3 to 6 years. The results contribute to our understanding of how interactions across multiple levels of analysis contribute to the development of ND.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1992). Manual for the Child Behavior Checklist/2–3 and 1992 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Akaike, H. (1987). Factor analysis and the AIC. Psychometrika, 52, 317332.CrossRefGoogle Scholar
Alkon, A., Goldstein, L. H., Smider, N., Essex, M. J., Kupfer, D. J., & Boyce, W. T. (2003). Developmental and contextual influences on autonomic reactivity in young children. Developmental Psychobiology, 42, 6478. doi:10.1002/dev.10082 CrossRefGoogle ScholarPubMed
Bazhenova, O. V., & Porges, S. (1997). The integrative neurobiology of affiliation. Annals of the New York Academy of Science, 807, 469.CrossRefGoogle Scholar
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.Google Scholar
Beauchaine, T. P., Gardner, J., & Hagen, B. (2000). Comorbid depression and heart rate variability as predictors of aggressive and hyperactive symptom responsiveness during inpatient treatment of conduct-disordered, ADHD boys. Aggressive Behavior, 26, 425441. doi:10.1002/1098-2337(200011)26:6<425::aid-ab2>3.0.co;2-i Google Scholar
Beauchaine, T. P., Gatzeke-Kapp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184. doi:10.1016/j.biopsycho.2005.08.008 CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Hinshaw, S. P., & Pang, K. L. (2010). Comorbidity of attention-deficit/hyperactivity disorder and early-onset conduct disorder: Biological, environmental, and developmental mechanisms. Clinical Psychology: Science and Practice, 17, 327336. doi:10.1111/j.1468-2850.2010.01224.x Google Scholar
Beauchaine, T. P., Hong, J., & Marsh, P. (2008). Sex differences in autonomic correlates of conduct problems and aggression. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 788796. doi:10.1097/CHI.Ob013e318172ef4b Google Scholar
Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20, 745774. doi:10.1017/S0954579408000369 CrossRefGoogle ScholarPubMed
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory—II. New York: Psychological Corporation.Google Scholar
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 885908.Google Scholar
Berntson, G. G., Bigger, J. T. Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., et al. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623648.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30, 183196. doi:10.1111/j.1469-8986.1993.tb01731.x CrossRefGoogle ScholarPubMed
Bierman, K. L., Coie, J. D., Dodge, K. A., Foster, M. E., Greenberg, M. T., Lochman, J. E., et al. (2004). The effects of the Fast Track program on serious problem outcomes at the end of elementary school. Journal of Clinical Child and Adolescent Psychology, 33, 650661.CrossRefGoogle ScholarPubMed
Blair, C. (2003). Behavioral inhibition and behavioral activation in young children: Relations with self-regulation and adaptation to preschool in children attending Head Start. Developmental Psychobiology, 42, 301311.CrossRefGoogle ScholarPubMed
Blair, C., Granger, D. A., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., et al. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 19701984. doi:10.1111/j.1467-8624.2011.01643.x Google Scholar
Blandon, A. Y., Calkins, S. D., Keane, S. P., & O'Brien, M. (2010). Contributions of child's physiology and maternal behavior to children's trajectories of temperamental reactivity. Developmental Psychology, 46, 10891102.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230258.Google Scholar
Buss, K. A., Goldsmith, H. H., & Davidson, R. J. (2005). Cardiac reactivity is associated with changes in negative emotion in 24-month-olds. Developmental Psychobiology, 46, 118132. doi:10.1002/dev.20048 CrossRefGoogle ScholarPubMed
Caldwell, B. M., & Bradley, R. H. (1984). Home observation for measurement of the environment. Little Rock, AR: University of Arkansas at Little Rock Press.Google Scholar
Calkins, S. D., & Dedmon, S. E. (2000). Physiological and behavioral regulation in two-year-old children with aggressive/destructive behavior problems. Journal of Abnormal Child Psychology, 28, 103118.Google Scholar
Calkins, S. D., Graziano, P. A., & Keane, S. P. (2007). Cardiac vagal regulation differentiates among children at risk for behavior problems. Biological Psychology, 74, 144153. doi:10.1016/j.biopsycho.2006.09.005 CrossRefGoogle ScholarPubMed
Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool period: Stability, continuity, and implications for childhood adjustment. Developmental Psychobiology, 45, 101112. doi:10.1002/dev.20020 CrossRefGoogle ScholarPubMed
Chapman, K., Tarter, R. E., Kirisci, L., & Cornelius, M. D. (2007). Childhood neurobehavior disinhibition amplifies the risk of substance use disorder: Interaction of parental history and prenatal alcohol exposure. Journal of Developmental & Behavioral Pediatrics, 28, 219.Google Scholar
Clausen, J. M., Landsverk, J., Ganger, W., Chadwick, D., & Litrownik, A. (1998). Mental health problems of children in foster care. Journal of Child and Family Studies, 7, 283296.Google Scholar
Crowell, S. E., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115, 174178. doi:10.1037/0021-843X.115.1.174 Google Scholar
Derogatis, L. R., & Coons, H. L. (1993). Self-report measures of stress (2nd ed.). New York: Free Press.Google Scholar
DiPietro, J. A., Suess, P. E., Wheeler, J. S., Smouse, P. H., & Newlin, D. B. (1995). Reactivity and regulation in cocaine-exposed neonates. Infant Behavior and Development, 18, 407414. doi:10.1016/0163-6383(95)90030-6 Google Scholar
Dong, M., Anda, R. F., Felitti, V. J., Dube, S. R., Williamson, D. F., Thompson, T. J., et al. (2004). The interrelatedness of multiple forms of childhood abuse, neglect, and household dysfunction. Child Abuse and Neglect, 28, 771784. doi:10.1016/j.chiabu.2004.01.008 Google Scholar
Doussard-Roosevelt, J. A., Montgomery, L. A., & Porges, S. W. (2003). Short-term stability of physiological measures in kindergarten children: Respiratory sinus arrhythmia, heart period, and cortisol. Developmental Psychobiology, 43, 230242. doi:10.1002/dev.10136 Google Scholar
Dwek, C. S. (1991). Self theories and goals: Their role in motivation, personality and development. In Dienstbeir, R. A. (Ed.), Nebraska symposium on motivation (pp. 213221). Lincoln, NE: University of Nebraska Press.Google Scholar
Eiden, R. D., Granger, D. A., Schuetze, P., & Veira, Y. (2011). Child behavior problems among cocaine-exposed toddlers: Indirect and interactive effects. Development and Psychopathology, 23, 539550.Google Scholar
Elliott, D. S., Huizinga, D., & Ageton, S. S. (1985). Explaining delinquency and drug use. Beverly Hills, CA: Sage.Google Scholar
El-Sheikh, M. (2001). Parental drinking problems and children's adjustment: Vagal regulation and emotional reactivity as pathways and moderators of risk. Journal of Abnormal Psychology, 110, 499.Google Scholar
El-Sheikh, M., Harger, J., & Whitson, S. M. (2001). Exposure to interparental conflict and children's adjustment and physical health: The moderating role of vagal tone. Child Development, 72, 16171636.Google Scholar
El-Sheikh, M., & Hinnant, J. B. (2011). Marital conflict, respiratory sinus arrhythmia, and allostatic load: Interrelations and associations with the development of children's externalizing behavior. Development and Psychopathology, 23, 815829. doi:10.1017/S0954579411000320 Google Scholar
Feingold, A. (2009). Effect sizes for growth-modeling analysis for controlled clinical trials in the same metric as for classical analysis. Psychological Methods, 14, 43.CrossRefGoogle ScholarPubMed
Field, T., Pickens, J., Fox, N. A., Nawrocki, T., & Gonzalez, J. (1995). Vagal tone in infants of depressed mothers. Development and Psychopathology, 7, 227231. doi:doi:10.1017/S0954579400006465 Google Scholar
Fisher, P. A., Lester, B. M., DeGarmo, D. S., Lagasse, L. L., Lin, H., Shankaran, S., et al. (2011). The combined effects of prenatal drug exposure and early adversity on neurobehavioral disinhibition in childhood and adolescence. Development and Psychopathology, 23, 777788. doi:10.1017/S0954579411000290 CrossRefGoogle ScholarPubMed
Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. O. (2007). Effects of a therapeutic intervention for foster preschoolers on diurnal cortisol activity. Psychoneuroendocrinology, 32, 892905. doi:10.1016/j.psyneuen.2007.06.008 Google Scholar
Gentzler, A. L., Santucci, A. K., Kovacs, M., & Fox, N. A. (2009). Respiratory sinus arrhythmia reactivity predicts emotion regulation and depressive symptoms in at-risk and control children. Biological Psychology, 82, 156163. doi:10.1016/j.biopsycho.2009.07.002 Google Scholar
Granger, D. A., & Kivlighan, K. T. (2003). Integrating biological, behavioral, and social levels of analysis in early child development: Progress, problems, and prospects. Child Development, 74, 10581063. doi:10.1111/1467-8624.00590 Google Scholar
Gunnar, M. R., & Fisher, P. A. (2006). Early Experience, Stress, and Prevention Network: Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Development and Psychopathology, 18, 651677.Google Scholar
Habeych, M. E., Charles, P. J., Sclabassi, R. J., Kirisci, L., & Tarter, R. E. (2005). Direct and mediated associations between P300 amplitude in childhood and substance use disorders outcome in young adulthood. Biological Psychiatry, 57, 7682. doi:10.1016/j.biopsych.2004.09.028 CrossRefGoogle ScholarPubMed
Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48, 263274.CrossRefGoogle ScholarPubMed
Harden, B. J. (2004). Safety and stability for foster children: A developmental perspective. Children, Families, and Foster Care, 14, 3147.Google Scholar
Heckhausen, J., & Dweck, C. S. (1998). Motivation and self-regulation across the life span. New York: Cambridge University Press.Google Scholar
Heim, C., Plotsky, P. M., & Nemeroff, C. B. (2004). Importance of studying the contributions of early adverse experience to neurobiological findings in depresion. Neuropsychopharmacology, 29, 641648. doi:10.1038/sj.npp.1300397 Google Scholar
Hellemans, K. G., Sliwowska, J. H., Verma, P., & Weinberg, J. (2010). Prenatal alcohol exposure: Fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neuroscience & Biobehavioral Reviews, 34, 791807. doi:10.1016/j.neubiorev.2009.06.004 CrossRefGoogle ScholarPubMed
Hill, A. L., Degnan, K. A., Calkins, S. D., & Keane, S. P. (2006). Profiles of externalizing behavior problems for boys and girls across preschool: The roles of emotion regulation and inattention. Developmental Psychology, 42, 913928. doi:10.1037/0012-1649.42.5.913 Google Scholar
Hinnant, J. B., & El-Sheikh, M. (2009). Children's externalizing and internalizing symptoms over time: The role of individual differences in patterns of RSA responding. Journal of Abnormal Child Psychology, 37, 10491061. doi:10.1007/s10802-009-9341-1 CrossRefGoogle ScholarPubMed
Hollingshead, A. B. (1975). Four-Factor Index of Social Status. New Haven, CT: Yale University Press.Google Scholar
Huffman, L. C. (1998). Infant temperament and cardiac vagal tone: Assessments at twelve weeks of age. Child Development, 69, 624.Google Scholar
Iacono, W. G., Carlson, S. R., Taylor, J., Elkins, I. J., & McGue, M. (1999). Behavioral disinhibition and the development of substance-use disorders: Findings from the Minnesota Twin Family Study. Development and Psychopathology, 11, 869900.Google Scholar
Iacono, W. G., Malone, S. M., & McGue, M. (2008). Behavioral disinhibition and the development of early-onset addiction: Common and specific influences. Annual Review of Clinical Psychology, 4, 325348. doi:10.1146/annurev.clinpsy.4.022007.141157 Google Scholar
Ingoldsby, E. M., Kohl, G. O., McMahon, R. J., Lengua, L., & Group, C. P. P. R. (2006). Conduct problems, depressive symptomatology and their co-occurring presentation in childhood as predictors of adjustment in early adolescence. Journal of Abnormal Child Psychology, 34, 603621.Google Scholar
Jennings, J. R., Berg, W. K., Hutcheson, J. S., Obrist, P., Porges, S., & Turpin, G. (1981). Committee report: Publication guidelines for heart rate studies in man. Psychophysiology, 18, 226231. doi:10.1111/j.1469-8986.1981.tb03023.x Google Scholar
Kaplow, J. B., Curran, P. J., & Dodge, K. A. (2002). Child, parent, and peer predictors of early-onset substance use: A multisite longitudinal study. Journal of Abnormal Child Psychology, 30, 199216.Google Scholar
Keller, P. S., & El-Sheikh, M. (2009). Salivary alpha-amylase as a longitudinal predictor of children's externalizing symptoms: Respiratory sinus arrhythmia as a moderator of effects. Psychoneuroendocrinology, 34, 633.Google Scholar
Kishiyama, M. M., Boyce, W. T., Jimenez, A. M., Perry, L. M., & Knight, R. T. (2009). Socioeconomic disparities affect prefrontal function in children. Journal of Cognitive Neuroscience, 21, 11061115. doi:10.1162/jocn.2009.21101 Google Scholar
Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457474. doi:10.1007/bf02296338 Google Scholar
Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic connections among substance dependence, antisocial behavior, and personality: Modeling the externalizing spectrum. Journal of Abnormal Psychology, 111, 411424.Google Scholar
Krueger, R. F., & South, S. C. (2009). Externalizing disorders: Cluster 5 of the proposed meta-structure for DSM-V and ICD-11. Psychologial Medicine, 39, 20612070. doi:10.1017/S0033291709990328 Google Scholar
Lamis, D. A., Malone, P. S., Lansford, J. E., & Lochman, J. E. (2012). Maternal depressive symptoms as a predictor of alcohol use onset and heavy episodic drinking in youths. Unpublished manuscript.CrossRefGoogle Scholar
Lester, B. M., LaGasse, L. L., & Seifer, R. (1998). Cocaine exposure and children: The meaning of subtle effects. Science, 282, 633634.Google Scholar
Lester, B. M., Lagasse, L. L., Shankaran, S., Bada, H. S., Bauer, C. R., Lin, R., et al. (2010). Prenatal cocaine exposure related to cortisol stress reactivity in 11-year-old children. Journal of Pediatrics, 157, 288295. doi:10.1016/j.jpeds.2010.02.039 Google Scholar
Lester, B. M., Lin, H., Degarmo, D. S., Fisher, P. A., Lagasse, L. L., Levine, T. P., et al. (2012). Neurobehavioral disinhibition predicts initiation of substance use in children with prenatal cocaine exposure. Drug and Alcohol Dependence. Advance online publication. doi:10.1016/j.drugalcdep.2012.04.014 Google Scholar
Lester, B. M., Marsit, C., Conradt, E., Bromer, C., & Padbury, J. (in press). Behavioral epigenetics and the developmental origins of child mental health disorders. Journal of Developmental Origins of Health and Disease, 1, 1.Google Scholar
Lester, B. M., & Padbury, J. F. (2009). Third pathophysiology of prenatal cocaine exposure. Developmental Neuroscience, 31, 2335.Google Scholar
Lester, B. M., Tronick, E. Z., LaGasse, L., Seifer, R., Bauer, C. R., Shankaran, S., et al. (2002). The maternal lifestyle study: Effects of substance exposure during pregnancy on neurodevelopmental outcome in 1-month-old infants. Pediatrics, 110, 11821192.Google Scholar
Lilienfeld, S. O. (2003). Comorbidity between and within childhood externalizing and internalizing disorders: Reflections and directions. Journal of Abnormal Child Psychology, 31, 285291.Google Scholar
Luciana, M. (2003). Practitioner review: Computerized assessment of neuropsychological function in children: Clinical and research applications of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). Journal of Child Psychology and Psychiatry, 44, 649663.Google Scholar
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.Google Scholar
Marcovitch, S., Leigh, J., Calkins, S. D., Leerks, E. M., O'Brien, M., & Blankson, A. N. (2010). Moderate vagal withdrawal in 3.5-year-old children is associated with optimal performance on executive function tasks. Developmental Psychobiology, 52, 603608.Google Scholar
Mayet, S., Groshkova, T., Morgan, L., MacCormack, T., & Strang, J. (2008). Drugs and pregnancy—Outcomes of women engaged with a specialist perinatal outreach addictions service. Drug and Alcohol Review, 27, 497503. doi:10.1080/09595230802245261 Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344. doi:10.1111/j.1749-6632.1998.tb09546.x Google Scholar
McNamee, R. L., Dunfee, K. L., Luna, B., Clark, D. B., Eddy, W. F., & Tarter, R. E. (2008). Brain activation, response inhibition, and increased risk for substance use disorder. Alcohoism: Clinical and Experimental Research, 32, 405413. doi:10.1111/j.1530-0277.2007.00604.x CrossRefGoogle ScholarPubMed
Mehta, S. K., Finkelhor, R. S., Anderson, R. L., Harcar-Sevcik, R. A., Wasser, T. E., & Bahler, R. C. (1993). Transient myocardial ischemia in infants prenatally exposed to cocaine. Journal of Pediatrics, 122, 945949. doi:10.1016/s0022-3476(09)90025-7 Google Scholar
Mezzich, A. C., Tarter, R. E., Feske, U., Kirisci, L., McNamee, R. L., & Day, B. (2007). Assessment of risk for substance use disorder consequent to consumption of illegal drugs: Psychometric validation of the neurobehavior disinhibition trait. Psychology of Addictive Behaviors, 21, 508.Google Scholar
Milan, S., & Pinderhughes, E. E. (2006). Family instability and child maladjustment trajectories during elementary school. Journal of Abnormal Child Psychology, 34, 4053.Google Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406.Google Scholar
Moore, G. A., & Calkins, S. D. (2004). Infants' vagal regulation in the still-face paradigm is related to dyadic coordination of mother–infant interaction. Developmental Psychology, 40, 1068.Google Scholar
Musser, E. D., Backs, R. W., Schmitt, C. F., Ablow, J. C., Measelle, J. R., & Nigg, J. T. (2011). Emotion regulation via the autonomic nervous system in children with attention-deficit/hyperactivity disorder (ADHD). Journal of Abnormal Child Psychology, 39, 841852. doi:10.1007/s10802-011-9499-1 Google Scholar
Muthén, L. K., & Muthén, B. O. (2007). Mplus user's guide (5th ed.). Los Angeles: Author.Google Scholar
Obradovic, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: the Interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289. doi:10.1111/j.1467-8624.2009.01394.x Google Scholar
Pechtel, P., & Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology (Berlin), 214, 5570. doi:10.1007/s00213-010-2009-2 Google Scholar
Pickens, J. N., & Field, T. (1995). Facial expressions and vagal tone of infants of depressed and non-depressed mothers. Early Development and Parenting, 4, 8389.CrossRefGoogle Scholar
Porges, S. W. (1985). Method and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems. US Patent No. 4,510,944.Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143. doi:10.1016/j.biopsycho.2006.06.009 Google Scholar
Porges, S. W., Doussard-Roosevelt, J. A., Portales, A. L., & Greenspan, S. I. (1996). Infant regulation of the vagal “brake” predicts child behavior problems: A psychobiological model of social behavior. Developmental Psychobiology, 29, 697712. doi:10.1002/(SICI)1098-2302(199612)29:8&lt;697::AID-DEV5&gt;3.0.CO;2-O 3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Propper, C. (2012). The early development of vagal tone: Effects of poverty and elevated contextual risk. New York: Oxford University Press.Google Scholar
Propper, C., Moore, G. A., Mills-Koonce, W. R., Halpern, C. T., Hill-Soderlund, A. L., Calkins, S. D., et al. (2008). Gene–environment contributions to the development of infant vagal reactivity: The interaction of dopamine and maternal sensitivity. Child Development, 79, 13771394. doi:10.1111/j.1467-8624.2008.01194.x Google Scholar
Raine, A., Lencz, T., Bihrle, S., Lacasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119127.CrossRefGoogle ScholarPubMed
Rigterink, T., Fainsilber Katz, L., & Hessler, D. M. (2010). Domestic violence and longitudinal associations with children's physiological regulation abilities. Journal of Interpersonal Violence, 25, 16691683. doi:10.1177/0886260509354589 Google Scholar
Rottenberg, J., Gross, J. J., & Gotlib, I. H. (2005). Emotion context insensitivity in major depressive disorder. Journal of Abnormal Psychology, 114, 627639. doi:10.1037/0021-843X.114.4.627 Google Scholar
Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin, C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 8097.Google Scholar
Saridjan, N. S., Huizink, A. C., Koetsier, J. A., Jaddoe, V. W., Mackenbach, J. P., Hofman, A., et al. (2010). Do social disadvantage and early family adversity affect the diurnal cortisol rhythm in infants? The Generation R Study. Hormones and Behavior, 57, 247254.CrossRefGoogle ScholarPubMed
Schuetze, P., & Eiden, R. D. (2006). The association between maternal cocaine use during pregnancy and physiological regulation in 4- to 8-week-old infants: An examination of possible mediators and moderators. Journal of Pediatric Psychology, 31, 1526. doi:10.1093/jpepsy/jsj022 Google Scholar
Schuetze, P., Eiden, R. D., & Coles, C. D. (2007). Prenatal cocaine and other substance exposure: Effects on infant autonomic regulation at 7 months of age. Developmental Psychobiology, 49, 276289. doi:10.1002/dev.20215 Google Scholar
Schuetze, P., Eiden, R. D., & Edwards, E. P. (2009). A longitudinal examination of physiological regulation in cocaine-exposed infants across the first 7 months of life. Infancy, 14, 1943. doi:10.1080/15250000802569660 Google Scholar
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333343.Google Scholar
Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): Description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 2838.CrossRefGoogle ScholarPubMed
Sheinkopf, S. J., Lagasse, L. L., Lester, B. M., Liu, J., Seifer, R., Bauer, C. R., et al. (2007). Vagal tone as a resilience factor in children with prenatal cocaine exposure. Development and Psychopathology, 19, 649673. doi:10.1017/S0954579407000338 Google Scholar
Sheinkopf, S. J., Lester, B. M., Sanes, J. N., Eliassen, J. C., Hutchison, E. R., Seifer, R., et al. (2009). Functional MRI and response inhibition in children exposed to cocaine in utero: Preliminary findings. Developmental Neuroscience, 31, 159166. doi:10.1159/000207503 Google Scholar
Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. Journal of the American Medical Association, 301, 22522259.Google Scholar
Smith, D. K., Johnson, A. B., Pears, K. C., Fisher, P. A., & DeGarmo, D. S. (2007). Child maltreatment and foster care: Unpacking the effects of prenatal and postnatal parental substance use. Child Maltreatment, 12, 150160. doi:10.1177/1077559507300129 Google Scholar
Staton, L., El-Sheikh, M., & Buckhalt, J. A. (2009). Respiratory sinus arrhythmia and cognitive functioning in children. Developmental Psychobiology, 51, 249258. doi:10.1002/dev.20361 Google Scholar
Suess, P. E., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31, 1722.Google Scholar
Tarter, R. E., Kirisci, L., Mezzich, A., Cornelius, J. R., Pajer, K., Vanyukov, M., et al. (2003). Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. American Journal of Psychiatry, 160, 10781085.Google Scholar
Tottenham, N., Hare, T. A., Millner, A., Gilhooly, T., Zevin, J. D., & Casey, B. J. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14, 190204. doi:10.1111/j.1467-7687.2010.00971.x Google Scholar
Vasilev, C. A., Crowell, S. E., Beauchaine, T. P., Mead, H. K., & Gatzke-Kopp, L. M. (2009). Correspondence between physiological and self-report measures of emotion dysregulation: A longitudinal investigation of youth with and without psychopathology. Journal of Child Psychology and Psychiatry, 50, 13571364. doi:10.1111/j.1469-7610.2009.02172.x Google Scholar
Yumoto, C., Jacobson, S. W., & Jacobson, J. L. (2008). Fetal substance exposure and cumulative environmental risk in an African American cohort. Child Development, 79, 17611776. doi:10.1111/j.1467-8624.2008.01224.x Google Scholar