Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T00:34:35.391Z Has data issue: false hasContentIssue false

Conduct disorder symptomatology is associated with an altered functional connectome in a large national youth sample

Published online by Cambridge University Press:  14 April 2021

Scott Tillem*
Affiliation:
Department of Psychology, Yale University, New Haven, CT, USA
May I. Conley
Affiliation:
Department of Psychology, Yale University, New Haven, CT, USA
Arielle Baskin-Sommers
Affiliation:
Department of Psychology, Yale University, New Haven, CT, USA
*
Author for Correspondence: Scott Tillem, 2 Hillhouse Ave., New Haven, CT 06511, USA. E-mail: [email protected]

Abstract

Conduct disorder (CD), characterized by youth antisocial behavior, is associated with a variety of neurocognitive impairments. However, questions remain regarding the neural underpinnings of these impairments. To investigate novel neural mechanisms that may support these neurocognitive abnormalities, the present study applied a graph analysis to resting-state functional magnetic resonance imaging (fMRI) data collected from a national sample of 4,781 youth, ages 9–10, who participated in the baseline session of the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®). Analyses were then conducted to examine the relationships among levels of CD symptomatology, metrics of global topology, node-level metrics for subcortical structures, and performance on neurocognitive assessments. Youth higher on CD displayed higher global clustering (β = .039, 95% CIcorrected [.0027 .0771]), but lower Degreesubcortical (β = −.052, 95% CIcorrected [−.0916 −.0152]). Youth higher on CD had worse performance on a general neurocognitive assessment (β = −.104, 95% CI [−.1328 −.0763]) and an emotion recognition memory assessment (β = −.061, 95% CI [−.0919 −.0290]). Finally, global clustering mediated the relationship between CD and general neurocognitive functioning (indirect β = −.002, 95% CI [−.0044 −.0002]), and Degreesubcortical mediated the relationship between CD and emotion recognition memory performance (indirect β = −.002, 95% CI [−.0046 −.0005]). CD appears associated with neuro-topological abnormalities and these abnormalities may represent neural mechanisms supporting CD-related neurocognitive disruptions.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26, 6372. doi:10.1523/jneurosci.3874-05.2006.CrossRefGoogle ScholarPubMed
Aghajani, M., Colins, O. F., Klapwijk, E. T., Veer, I. M., Andershed, H., Popma, A., … Vermeiren, R. R. J. M. (2016). Dissociable relations between amygdala subregional networks and psychopathy trait dimensions in conduct-disordered juvenile offenders. Human Brain Mapping, 37, 40174033. doi:10.1002/hbm.23292.CrossRefGoogle ScholarPubMed
Akshoomoff, N., Beaumont, J. L., Bauer, P. J., Dikmen, S. S., Gershon, R. C., Mungas, D., … Zelazo, P. D. (2013). VIII. NIH toolbox cognition battery (CB): Composite scores of crystallized, fluid, and overall cognition. Monographs of the Society for Research in Child Development, 78, 119132. doi:10.1111/mono.12038.CrossRefGoogle ScholarPubMed
Baas, D., Aleman, A., & Kahn, R. S. (2004). Lateralization of amygdala activation: A systematic review of functional neuroimaging studies. Brain Research Reviews, 45, 96103.CrossRefGoogle ScholarPubMed
Baker, R. H., Clanton, R. L., Rogers, J. C., & De Brito, S. A. (2015). Neuroimaging findings in disruptive behavior disorders. CNS Spectrums, 20, 369381. doi:10.1017/s1092852914000789.CrossRefGoogle ScholarPubMed
Barch, D. M., Albaugh, M. D., Avenevoli, S., Chang, L., Clark, D. B., Glantz, M. D., … Yurgelun-Todd, D. (2018). Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. Developmental Cognitive Neuroscience, 32, 5566. doi:10.1016/j.dcn.2017.10.010.CrossRefGoogle ScholarPubMed
Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar, B. L., Corbetta, M., … Feldt, C. (2013). Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage, 80, 169189. doi:10.1016/j.neuroimage.2013.05.033.CrossRefGoogle ScholarPubMed
Bauer, P. J., Dikmen, S. S., Heaton, R. K., Mungas, D., Slotkin, J., & Beaumont, J. L. (2013). III. NIH toolbox cognition battery (CB): Measuring episodic memory. Monographs of the Society for Research in Child Development, 78, 3448. doi:10.1111/mono.12033.CrossRefGoogle ScholarPubMed
Blair, J. (1995). A cognitive developmental approach to morality: Investigating the psychopath. Cognition, 57, 129. doi:10.1016/0010-0277(95)00676-p.CrossRefGoogle ScholarPubMed
Blair, J., Leibenluft, E., & Pine, D. S. (2014). Conduct disorder and callous–unemotional traits in youth. New England Journal of Medicine, 371, 22072216. doi:10.1056/nejmc1415936.CrossRefGoogle ScholarPubMed
Broulidakis, M. J., Fairchild, G., Sully, K., Blumensath, T., Darekar, A., & Sonuga-Barke, E. J. S. (2016). Reduced default mode connectivity in adolescents with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 55, 800808. e801. doi:10.1016/j.jaac.2016.05.021.CrossRefGoogle ScholarPubMed
Brown, R. T., Jaffe, S. L., Silverstein, J., & Magee, H. (1991). Methylphenidate and hospitalized adolescents with conduct disorder: Dose effects on classroom behavior, academic performance, and impulsivity. Journal of Youth and Adolescence, 20, 501518. doi:10.1007/bf01540634.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198. doi:10.1038/nrn2575.CrossRefGoogle ScholarPubMed
Carlozzi, N. E., Beaumont, J. L., Tulsky, D. S., & Gershon, R. C. (2015). The NIH toolbox pattern comparison processing speed test: Normative data. Archives of Clinical Neuropsychology, 30, 359368. doi:10.1093/arclin/acv031.CrossRefGoogle ScholarPubMed
Carlozzi, N. E., Tulsky, D. S., Chiaravalloti, N. D., Beaumont, J. L., Weintraub, S., Conway, K., & Gershon, R. C. (2014). NIH toolbox cognitive battery (NIHTB-CB): The NIHTB pattern comparison processing speed test. Journal of the International Neuropsychological Society, 20, 630. doi:10.1093/arclin/acv031.CrossRefGoogle ScholarPubMed
Carlozzi, N. E., Tulsky, D. S., Kail, R. V., & Beaumont, J. L. (2013). VI. NIH toolbox cognition battery (CB): Measuring processing speed. Monographs of the Society for Research in Child Development, 78, 88102. doi:10.1111/mono.12036.CrossRefGoogle ScholarPubMed
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., … Garavan, H. (2018). The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 4354. doi:10.1016/j.dcn.2018.03.001.CrossRefGoogle ScholarPubMed
Clark, D. B., Fisher, C. B., Bookheimer, S., Brown, S. A., Evans, J. H., Hopfer, C., … Pfefferbaum, A. (2018). Biomedical ethics and clinical oversight in multisite observational neuroimaging studies with children and adolescents: The ABCD experience. Developmental Cognitive Neuroscience, 32, 143154. doi:10.1016/j.dcn.2017.06.005.CrossRefGoogle ScholarPubMed
Cohen, A. O., Breiner, K., Steinberg, L., Bonnie, R. J., Scott, E. S., Taylor-Thompson, K., … Heller, A. S. (2016). When is an adolescent an adult? Assessing cognitive control in emotional and nonemotional contexts. Psychological Science, 27, 549562. doi:10.1177/0956797615627625.CrossRefGoogle ScholarPubMed
Cohn, M. D., Pape, L. E., Schmaal, L., van den Brink, W., van Wingen, G., Vermeiren, R. R., … Popma, A. (2015). Differential relations between juvenile psychopathic traits and resting state network connectivity. Human Brain Mapping, 36, 23962405. doi:10.1002/hbm.22779.CrossRefGoogle ScholarPubMed
Dick, A. S., Watts, A. L., Heeringa, S. G., Lopez, D. A., Bartsch, H., Fan, C. C., … Haist, F. (2020). Meaningful effects in the adolescent brain cognitive development study. bioRxiv. doi:10.1101/2020.09.01.276451.Google Scholar
Dikmen, S. S., Bauer, P. J., Weintraub, S., Mungas, D., Slotkin, J., Beaumont, J. L., … Heaton, R. K. (2014). Measuring episodic memory across the lifespan: NIH toolbox picture sequence memory test. Journal of the International Neuropsychological Society, 20, 611. doi:10.1017/s1355617714000460.CrossRefGoogle ScholarPubMed
Dotterer, H. L., Waller, R., Hein, T. C., Pardon, A., Mitchell, C., Lopez-Duran, N., … Hyde, L. W. (2020). Clarifying the link between amygdala functioning during emotion processing and antisocial behaviors versus callous-unemotional traits within a population-based community sample. Clinical Psychological Science, 20, 918935. doi:10.1177/2167702620922829.CrossRefGoogle Scholar
Eichenbaum, H. (2001). The hippocampus and declarative memory: Cognitive mechanisms and neural codes. Behavioural Brain Research, 127, 199207. doi:10.1016/s0166-4328(01)00365-5.CrossRefGoogle ScholarPubMed
Estrada, S., Tillem, S., Stuppy-Sullivan, A., & Baskin-Sommers, A. (2019). Specifying the connection between reward processing and antisocial psychopathology across development: Review, integration, and future directions. In Gruber, J. (Ed.), Oxford handbook of positive emotion and psychopathology (pp. 312332). New York, NY: Oxford University Press. doi:10.1093/oxfordhb/9780190653200.013.21.Google Scholar
Fairchild, G., van Goozen, S. H. M., Stollery, S. J., Aitken, M. R. F., Savage, J., Moore, S. C., & Goodyer, I. M. (2009). Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Biological Psychiatry, 66, 162168. doi:10.1016/j.biopsych.2009.02.024.CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340347. doi:10.1162/089892902317361886.CrossRefGoogle ScholarPubMed
Finger, E. C., Marsh, A., Blair, K. S., Majestic, C., Evangelou, I., Gupta, K., … Blair, R. J. (2012). Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits. Psychiatry Research, 202, 239244. doi:10.1016/j.pscychresns.2011.11.002.CrossRefGoogle ScholarPubMed
Freches, G. B., Haak, K. V., Bryant, K. L., Schurz, M., Beckmann, C. F., & Mars, R. B. (2020). Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Structure and Function, 116. doi:10.1007/s00429-020-02047-0.Google Scholar
Frick, P. J. (2012). Developmental pathways to conduct disorder: Implications for future directions in research, assessment, and treatment. Journal of Clinical Child & Adolescent Psychology, 41, 378389. doi:10.1080/15374416.2012.664815.CrossRefGoogle Scholar
Garavan, H., Bartsch, H., Conway, K., Decastro, A., Goldstein, R. Z., Heeringa, S., … Zahs, D. (2018). Recruiting the ABCD sample: Design considerations and procedures. Developmental Cognitive Neuroscience, 32, 1622. doi:10.1016/j.dcn.2018.04.004.CrossRefGoogle ScholarPubMed
Gershon, R. C., Cook, K. F., Mungas, D., Manly, J. J., Slotkin, J., Beaumont, J. L., & Weintraub, S. (2014). Language measures of the NIH toolbox cognition battery. Journal of the International Neuropsychological Society, 20, 642651. doi:10.1017/s1355617714000411.CrossRefGoogle ScholarPubMed
Gershon, R. C., Slotkin, J., Manly, J. J., Blitz, D. L., Beaumont, J. L., Schnipke, D., … Hirsh-Pasek, K. (2013). IV. NIH toolbox cognition battery (CB): Measuring language (vocabulary comprehension and reading decoding). Monographs of the Society for Research in Child Development, 78, 4969. doi:10.1111/mono.12034.CrossRefGoogle Scholar
Gershon, R. C., Wagster, M. V., Hendrie, H. C., Fox, N. A., Cook, K. F., & Nowinski, C. J. (2013). NIH toolbox for assessment of neurological and behavioral function. Neurology, 80, S2S6. doi:10.1212/wnl.0b013e3182872e5f.CrossRefGoogle ScholarPubMed
Ginestet, C. E., Nichols, T. E., Bullmore, T., & Simmons, A. (2011). Brain network analysis: Separating cost from topology using cost-integration. PLoS One, 6, doi:10.1371/journal.pone.0021570.CrossRefGoogle ScholarPubMed
Gonzalez, G. F., Van der Molen, M. J., Zaric, G., Bonte, M., Tijms, J., Blomert, L., … Van der Molen, M. W. (2016). Graph analysis of EEG resting state functional networks in dyslexic readers. Clinical Neurophysiology, 127, 31653175. doi:10.1016/j.clinph.2017.09.106.CrossRefGoogle Scholar
Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and evaluation of a cortical area parcellation from resting-state correlations. Cerebral Cortex, 26, 288303. doi:10.1093/cercor/bhu239.CrossRefGoogle ScholarPubMed
Graziano, P. A., Landis, T., Maharaj, A., Ros-Demarize, R., Hart, K. C., & Garcia, A. (2019). Differentiating preschool children with conduct problems and callous-unemotional behaviors through emotion regulation and executive functioning. Journal of Clinical Child & Adolescent Psychology, 113. doi:10.1080/15374416.2019.1666399.Google ScholarPubMed
Hadley, J. A., Kraguljac, N. V., White, D. M., Ver Hoef, L., Tabora, J., & Lahti, A. C. (2016). Change in brain network topology as a function of treatment response in schizophrenia: A longitudinal resting-state fMRI study using graph theory. Schizophrenia, 2, 17. doi:10.1038/npjschz.2016.14.CrossRefGoogle ScholarPubMed
Hagler, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A., … Dale, A. M. (2019). Image processing and analysis methods for the adolescent brain cognitive development study. NeuroImage, 202, 116091. doi:10.1016/j.neuroimage.2019.116091.CrossRefGoogle ScholarPubMed
Haney-Caron, E., Caprihan, A., & Stevens, M. C. (2014). DTI-measured white matter abnormalities in adolescents with conduct disorder. Journal of Psychiatric Research, 48, 111120. doi:10.1016/j.jpsychires.2013.09.015.CrossRefGoogle ScholarPubMed
Hawes, S. W., Waller, R., Thompson, W. K., Hyde, L. W., Byrd, A. L., Burt, S. A., … Gonzalez, R. (2020). Assessing callous-unemotional traits: Development of a brief, reliable measure in a large and diverse sample of preadolescent youth. Psychological Medicine, 50, 456464. doi:10.1017/S0033291719000278.CrossRefGoogle Scholar
Hayes, A. F. (2013). The PROCESS macro for SPSS and SAS (version 2.15) [Software]. Retrieved from http://www.processmacro.org/index.htmlGoogle Scholar
Hobson, C. W., Scott, S., & Rubia, K. (2011). Investigation of cool and hot executive function in ODD/CD independently of ADHD. Journal of Child Psychology and Psychiatry, 52, 10351043. doi:10.1111/j.1469-7610.2011.02454.x.CrossRefGoogle ScholarPubMed
Hosseini, S. M. H., Hoeft, F., & Kesler, S. R. (2012). GAT: A graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS One, 7, doi:10.1371/journal.pone.0040709.CrossRefGoogle ScholarPubMed
Iacono, W. G., Heath, A. C., Hewitt, J. K., Neale, M. C., Banich, M. T., Luciana, M. M., … Bjork, J. M. (2018). The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design. Developmental Cognitive Neuroscience, 32, 3042. doi:10.1016/j.dcn.2017.09.001.CrossRefGoogle ScholarPubMed
Jiang, Y., Liu, W., Ming, Q., Gao, Y., Ma, R., Zhang, X., … Huang, B. (2016). Disrupted topological patterns of large-scale network in conduct disorder. Scientific Reports, 6, 37053. doi:10.1038/srep37053.CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Axelson, D., Perepletchikova, F., Brent, D., & Ryan, N. (2013). Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version 2013 (K-SADS-PL). Pittsburgh, PA: Western Psychiatric Institute and Yale University.Google Scholar
Keightley, M. L., Chiew, K. S., Anderson, J. A. E., & Grady, C. L. (2011). Neural correlates of recognition memory for emotional faces and scenes. Social Cognitive and Affective Neuroscience, 6, 2437. doi:10.1093/scan/nsq003.CrossRefGoogle ScholarPubMed
Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinion in Neurology, 18, 411417. doi:10.1097/01.wco.0000173463.24758.f6.CrossRefGoogle ScholarPubMed
Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7, 4850. doi:10.1090/s0002-9939-1956-0078686-7.CrossRefGoogle Scholar
Langer, N., Pedroni, A., Gianotti, L. R. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33, 13931406. doi:10.1002/hbm.21297.CrossRefGoogle ScholarPubMed
Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience & Biobehavioral Reviews, 77, 286300. doi:10.1016/j.neubiorev.2017.03.018.CrossRefGoogle ScholarPubMed
Lindner, P., Flodin, P., Budhiraja, M., Savic, I., Jokinen, J., Tiihonen, J., & Hodgins, S. (2018). Associations of psychopathic traits with local and global brain network topology in young adult women. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 10031012. doi:10.1016/j.bpsc.2018.04.010.Google ScholarPubMed
Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., … Jiang, T. (2008). Disrupted small-world networks in schizophrenia. Brain, 131, 945961. doi:10.1016/j.neuroimage.2011.09.035.CrossRefGoogle Scholar
Lu, F. M., Zhou, J. S., Zhang, J., Wang, X. P., & Yuan, Z. (2017). Disrupted small-world brain network topology in pure conduct disorder. Oncotarget, 8, 65506. doi:10.18632/oncotarget.19098.CrossRefGoogle ScholarPubMed
Lu, F. M., Zhou, J. S., Zhang, J., Xiang, Y. T., Zhang, J., Liu, Q., … Yuan, Z. (2015). Functional connectivity estimated from resting-state fMRI reveals selective alterations in male adolescents with pure conduct disorder. PLoS One, 10, e0145668. doi:10.1371/journal.pone.0145668.CrossRefGoogle ScholarPubMed
Luciana, M., Bjork, J. M., Nagel, B. J., Barch, D. M., Gonzalez, R., Nixon, S. J., & Banich, M. T. (2018). Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Developmental Cognitive Neuroscience, 32, 6779. doi:10.1016/j.dcn.2018.02.006.CrossRefGoogle ScholarPubMed
Menks, W. M., Furger, R., Lenz, C., Fehlbaum, L. V., Stadler, C., & Raschle, N. M. (2017). Microstructural white matter alterations in the corpus callosum of girls with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 56, 258265. doi:10.1016/j.jaac.2016.12.006.CrossRefGoogle ScholarPubMed
Merikangas, K. R., He, J. P., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., … Swendsen, J. (2010). Lifetime prevalence of mental disorders in US adolescents: Results from the national comorbidity survey replication–adolescent supplement (NCS-A). Journal of the American Academy of Child & Adolescent Psychiatry, 49, 980989. doi:10.1016/j.jaac.2010.05.017.CrossRefGoogle Scholar
Moffitt, T. E. (1993). The neuropsychology of conduct disorder. Development and Psychopathology, 5, 135151. doi:10.1017/S0954579400004302.CrossRefGoogle Scholar
Moffitt, T. E. (2006). Life-course-persistent versus adolescence-limited antisocial behavior. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Risk, disorder, and adaptation (pp. 570598). John Wiley & Sons, Inc.Google Scholar
Morgan, A. B., & Lilienfeld, S. O. (2000). A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clinical Psychology Review, 20, 113136. doi:10.1016/S0272-7358(98)00096-8.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33, 10041023. doi:10.1016/j.neubiorev.2009.04.001.CrossRefGoogle ScholarPubMed
Nigg, J. T., & Huang-Pollock, C. L. (2003). An early-onset model of the role of executive functions and intelligence in conduct disorder/delinquency. In Lahey, B. B., Moffitt, T. E. & Caspi, A. (Eds.), Causes of conduct disorder and juvenile delinquency (pp. 227253). The Guildford Press.Google Scholar
Noordermeer, S. D. S., Luman, M., & Oosterlaan, J. (2016). A systematic review and meta-analysis of neuroimaging in oppositional defiant disorder (ODD) and conduct disorder (CD) taking attention-deficit hyperactivity disorder (ADHD) into account. Neuropsychology Review, 26, 4472. doi:10.1007/s11065-015-9315-8.CrossRefGoogle ScholarPubMed
Offord, D. R., & Bennett, K. J. (1994). Conduct disorder: Long-term outcomes and intervention effectiveness. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 10691078. doi:10.1097/00004583-199410000-00001.CrossRefGoogle ScholarPubMed
Ogilvie, J. M., Stewart, A. L., Chan, R. C. K., & Shum, D. H. K. (2011). Neuropsychological measures of executive function and antisocial behavior: A meta-analysis. Criminology, 49, 10631107. doi:10.1111/j.1745-9125.2011.00252.x.CrossRefGoogle Scholar
Passamonti, L., Fairchild, G., Fornito, A., Goodyer, I. M., Nimmo-Smith, I., Hagan, C. C., & Calder, A. J. (2012). Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder. PLoS One, 7, e48789. doi:10.1371/journal.pone.0048789.CrossRefGoogle ScholarPubMed
Rogers, J. C., & De Brito, S. A. (2016). Cortical and subcortical gray matter volume in youths with conduct problems: A meta-analysis. JAMA Psychiatry, 73, 6472. doi:10.1001/jamapsychiatry.2015.2423.CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 10591069. doi:10.1016/j.neuroimage.2009.10.003.CrossRefGoogle ScholarPubMed
Sarkar, S., Craig, M. C., Catani, M., Dell'Acqua, F., Fahy, T., Deeley, Q., & Murphy, D. G. M. (2013). Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: A diffusion tensor imaging study. Psychological Medicine, 43, 401. doi:10.1017/S003329171200116X.CrossRefGoogle ScholarPubMed
Schoonheim, M. M., Geurts, J. J. G., Wiebenga, O. T., De Munck, J. C., Polman, C. H., Stam, C. J., … Wink, A. M. (2014). Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis. Multiple Sclerosis Journal, 20, 10581065. doi:10.1177/1352458513516892.CrossRefGoogle ScholarPubMed
Schoorl, J., van Rijn, S., de Wied, M., Van Goozen, S. H., & Swaab, H. (2018). Boys with oppositional defiant disorder/conduct disorder show impaired adaptation during stress: An executive functioning study. Child Psychiatry & Human Development, 49, 298307. doi:10.1007/s10578-017-0749-5.CrossRefGoogle ScholarPubMed
Shu, N., Duan, Y., Xia, M., Schoonheim, M. M., Huang, J., Ren, Z., … Shi, F. D. (2016). Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Scientific Reports, 6, 111. doi:10.1038/srep29383.CrossRefGoogle ScholarPubMed
Smit, D. J., de Geus, E. J., Boersma, M., Boomsma, D. I., & Stam, C. J. (2016). Life-span development of brain network integration assessed with phase lag index connectivity and minimum spanning tree graphs. Brain Connectivity, 6, 312325. doi:10.1089/brain.2015.0359.CrossRefGoogle ScholarPubMed
Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1, 3. doi:10.1186/1753-4631-1-3.CrossRefGoogle Scholar
Suprano, I., Delon-Martin, C., Kocevar, G., Stamile, C., Hannoun, S., Achard, S., … Nusbaum, F. (2019). Topological modification of brain networks organization in children with high intelligence quotient: A resting-state fMRI study. Frontiers in Human Neuroscience, 13, 241. doi:10.3389/fnhum.2019.00241.CrossRefGoogle ScholarPubMed
Teichner, G., & Golden, C. J. (2000). The relationship of neuropsychological impairment to conduct disorder in adolescence: A conceptual review. Aggression and Violent Behavior, 5, 509528. doi:10.1016/S1359-1789(98)00035-4.CrossRefGoogle Scholar
Tewarie, P., Hillebrand, A., Schoonheim, M. M., van Dijk, B. W., Geurts, J., Barkhof, F., … Stam, C. J. (2014). Functional brain network analysis using minimum spanning trees in multiple sclerosis: An MEG source-space study. NeuroImage, 88, 308318. doi:10.1016/j.neuroimage.2013.10.022.CrossRefGoogle ScholarPubMed
Tillem, S., Harenski, K., Harenski, C., Decety, J., Kosson, D., Kiehl, K. A., & Baskin-Sommers, A. (2019). Psychopathy is associated with shifts in the organization of neural networks in a large incarcerated male sample. NeuroImage: Clinical, 24, 102083. doi:10.1016/j.nicl.2019.102083.CrossRefGoogle Scholar
Tillem, S., van Dongen, J., Brazil, I. A., & Baskin-Sommers, A. (2018). Psychopathic traits are differentially associated with efficiency of neural communication. Psychophysiology, 55, e13194. doi:10.1111/psyp.13194.CrossRefGoogle ScholarPubMed
Tulsky, D. S., Carlozzi, N., Chiaravalloti, N. D., Beaumont, J. L., Kisala, P. A., Mungas, D., … Gershon, R. C. (2014). NIH toolbox cognition battery (NIHTB-CB): The list sorting test to measure working memory. Journal of the International Neuropsychological Society, 20, 599. doi:10.1017/S135561771400040X.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., Mandl, R. C. W., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2010). Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. Journal of Neuroscience, 30, 1591515926. doi:10.1523/JNEUROSCI.2874-10.2010.CrossRefGoogle ScholarPubMed
Viding, E., & Jones, A. P. (2008). Cognition to genes via the brain in the study of conduct disorder. Quarterly Journal of Experimental Psychology, 61, 171181. doi:10.1080/17470210701508889.CrossRefGoogle Scholar
Viding, E., Sebastian, C. L., Dadds, M. R., Lockwood, P. L., Cecil, C. A. M., De Brito, S. A., & McCrory, E. J. (2012). Amygdala response to preattentive masked fear in children with conduct problems: The role of callous-unemotional traits. American Journal of Psychiatry, 169, 11091116. doi:10.1176/appi.ajp.2012.12020191.CrossRefGoogle ScholarPubMed
Waller, R., Hawes, S. W., Byrd, A. L., Dick, A. S., Sutherland, M. T., Riedel, M. C., … Gonzalez, R. (2020). Disruptive behavior problems, callous-unemotional traits, and regional gray matter volume in the ABCD study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 470472. doi:10.1016/j.bpsc.2020.01.002.Google Scholar
Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., … He, Y. (2009). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Human Brain Mapping, 30, 15111523. doi:10.1002/hbm.20623.CrossRefGoogle ScholarPubMed
Woolfenden, S. R., Williams, K., & Peat, J. K. (2002). Family and parenting interventions for conduct disorder and delinquency: A meta-analysis of randomised controlled trials. Archives of Disease in Childhood, 86, 251256. doi:10.1136/adc.86.4.251.CrossRefGoogle ScholarPubMed
Zelazo, P. D. (2006). The dimensional change card sort (DCCS): A method of assessing executive function in children. Nature Protocols, 1, 297301. doi:10.1038/nprot.2006.46.CrossRefGoogle ScholarPubMed
Zhang, J., Zhu, X., Wang, X., Gao, J., Shi, H., Huang, B., … Yao, S. (2014). Increased structural connectivity in corpus callosum in adolescent males with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 466475. e461. doi:10.1016/j.jaac.2013.12.015.CrossRefGoogle ScholarPubMed
Zhou, J., Yao, N., Fairchild, G., Cao, X., Zhang, Y., Xiang, Y. T., … Wang, X. (2016). Disrupted default mode network connectivity in male adolescents with conduct disorder. Brain Imaging and Behavior, 10, 9951003. doi:10.1007/s11682-015-9465-6.CrossRefGoogle ScholarPubMed
Supplementary material: File

Tillem et al. supplementary materials

Tillem et al. supplementary materials

Download Tillem et al. supplementary materials(File)
File 72.5 KB