Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:19:00.486Z Has data issue: false hasContentIssue false

Bringing a developmental perspective to anxiety genetics

Published online by Cambridge University Press:  15 October 2012

Lauren M. McGrath*
Affiliation:
Massachusetts General Hospital
Sydney Weill
Affiliation:
Massachusetts General Hospital
Elise B. Robinson
Affiliation:
Massachusetts General Hospital
Rebecca Macrae
Affiliation:
Massachusetts Institute of Technology
Jordan W. Smoller
Affiliation:
Massachusetts General Hospital
*
Address correspondence and reprint requests to: Lauren M. McGrath, Massachusetts General Hospital, Simches Research Building 6th floor, 185 Cambridge Street, Boston, MA 02114; E-mail: [email protected].

Abstract

Despite substantial recent advancements in psychiatric genetic research, progress in identifying the genetic basis of anxiety disorders has been limited. We review the candidate gene and genome-wide literatures in anxiety, which have made limited progress to date. We discuss several reasons for this hindered progress, including small samples sizes, heterogeneity, complicated comorbidity profiles, and blurred lines between normative and pathological anxiety. To address many of these challenges, we suggest a developmental, multivariate framework that can inform and enhance anxiety phenotypes for genetic research. We review the psychiatric and genetic epidemiological evidence that supports such a framework, including the early onset and chronic course of anxiety disorders, shared genetic risk factors among disorders both within and across time, and developmentally dynamic genetic influences. We propose three strategies for developmentally sensitive phenotyping: examination of early temperamental risk factors, use of latent factors to model underlying anxiety liability, and use of developmental trajectories as phenotypes. Expanding the range of phenotypic approaches will be important for advancing studies of the genetic architecture of anxiety disorders.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amstadter, A. B., Koenen, K. C., Ruggiero, K. J., Acierno, R., Galea, S., Kilpatrick, D. G., et al. (2009). Variant in RGS2 moderates posttraumatic stress symptoms following potentially traumatic event exposure. Journal of Anxiety Disorders, 23, 369373.Google Scholar
Beesdo, K., Knappe, S., & Pine, D. S. (2009). Anxiety and anxiety disorders in children and adolescents: Developmental issues and implications for DSM-V. Psychiatric Clinics of North America, 32, 483524.Google Scholar
Bergami, M., Rimondini, R., Santi, S., Blum, R., Gotz, M., & Canossa, M. (2008). Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proceedings of the National Academy of Sciences, 105, 1557015575.CrossRefGoogle ScholarPubMed
Biederman, J., Hirshfeld-Becker, D. R., Rosenbaum, J. F., Herot, C., Friedman, D., Snidman, N., et al. (2001). Further evidence of association between behavioral inhibition and social anxiety in children. American Journal of Psychiatry, 158, 16731679.Google Scholar
Blaya, C., Salum, G. A., Lima, M. S., Leistner-Segal, S., & Manfro, G. G. (2007). Lack of association between the serotonin transporter promoter polymorphism (5-HTTLPR) and panic disorder: A systematic review and meta-analysis. Behavioral and Brain Functions, 3, 41.CrossRefGoogle ScholarPubMed
Boomsma, D., van Beijsterveldt, C. E., Bartels, M., & Hudziak, J. J. (2007). Genetic and environmental influence on anxious/depression: A longitudinal study in 3- to 12-year-old children. In Hudziak, J. J. (Ed.), Genetic and environmental influences on developmental psychopathology and wellness. Washington, DC: American Psychiatric Association.Google Scholar
Brady, E. U., & Kendall, P. C. (1992). Comorbidity of anxiety and depression in children and adolescents. Psychological Bulletin, 111, 244255.Google Scholar
Carter, A. S., Briggs-Gowan, M. J., Jones, S. M., & Little, T. D. (2003). The Infant–Toddler Social and Emotional Assessment (ITSEA): Factor structure, reliability, and validity. Journal of Abnormal Child Psychology, 31, 495514.CrossRefGoogle ScholarPubMed
Carter, A. S., Godoy, L., Wagmiller, R. L., Veliz, P., Marakovitz, S., & Briggs-Gowan, M. J. (2010). Internalizing trajectories in young boys and girls: The whole is not a simple sum of its parts. Journal of Abnormal Child Psychology, 38, 1931.CrossRefGoogle Scholar
Caspi, A., Harrington, H., Milne, B., Amell, J. W., Theodore, R. F., & Moffitt, T. E. (2003). Children's behavioral styles at age 3 are linked to their adult personality traits at age 26. Journal of Personality, 71, 495513.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.Google Scholar
Collins, A. L., Kim, Y., Sklar, P., O'Donovan, M. C., & Sullivan, P. F. (2012). Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychological Medicine, 42, 607616.Google Scholar
Costello, E. J., Egger, H. L., & Angold, A. (2005). The developmental epidemiology of anxiety disorders: Phenomenology, prevalence, and comorbidity. Child and Adolescent Psychiatric Clinics of North America, 14, 631648.CrossRefGoogle ScholarPubMed
Costello, E. J., Mustillo, S., Erkanli, A., Keeler, G., & Angold, A. (2003). Prevalence and development of psychiatric disorders in childhood and adolescence. Archives of General Psychiatry, 60, 837844.CrossRefGoogle ScholarPubMed
Cote, S., Tremblay, R. E., Nagin, D., Zoccolillo, M., & Vitaro, F. (2002). The development of impulsivity, fearfulness, and helpfulness during childhood: Patterns of consistency and change in the trajectories of boys and girls. Journal of Child Psychology and Psychiatry, 43, 609618.CrossRefGoogle ScholarPubMed
Craddock, N., O'Donovan, M. C., & Owen, M. J. (2006). Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophrenia Bulletin, 32, 916.CrossRefGoogle ScholarPubMed
Das, K., Li, J., Wang, Z., Tong, C., Fu, G., Li, Y., et al. (2011). A dynamic model for genome-wide association studies. Human Genetics, 129, 629639.CrossRefGoogle ScholarPubMed
Degnan, K. A., Almas, A. N., & Fox, N. A. (2010). Temperament and the environment in the etiology of childhood anxiety. Journal of Child Psychology and Psychiatry, 51, 497517.Google Scholar
Degnan, K. A., & Fox, N. A. (2007). Behavioral inhibition and anxiety disorders: Multiple levels of a resilience process. Development and Psychopathology, 19, 729746.CrossRefGoogle ScholarPubMed
DiLalla, L. F., Kagan, J., & Reznick, J. S. (1994). Genetic etiology of behavioral inhibition among 2-year-old children. Infant Behavior & Development, 17, 405412.CrossRefGoogle Scholar
Domschke, K., Deckert, J., O'Donovan, M. C., & Glatt, S. J. (2007). Meta-analysis of COMT val158met in panic disorder: Ethnic heterogeneity and gender specificity. American Journal of Medical Genetics B: Neuropsychiatric Genetics, 144B, 667673.CrossRefGoogle ScholarPubMed
Domschke, K., & Reif, A. (2012). Behavioral genetics of affective and anxiety disorders. Current Topics in Behavioral Neurosciences, 12, 463502.CrossRefGoogle ScholarPubMed
Duchesne, S., Larose, S., Vitaro, F., & Tremblay, R. E. (2010). Trajectories of anxiety in a population sample of children: Clarifying the role of children's behavioral characteristics and maternal parenting. Development and Psychopathology, 22, 361373.CrossRefGoogle Scholar
Duchesne, S., Vitaro, F., Larose, S., & Tremblay, R. E. (2008). Trajectories of anxiety during elementary-school years and the prediction of high school noncompletion. Journal of Youth and Adolescence, 37, 11341146.CrossRefGoogle Scholar
Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.CrossRefGoogle ScholarPubMed
Egger, H. L., & Angold, A. (2006). Common emotional and behavioral disorders in preschool children: Presentation, nosology, and epidemiology. Journal of Child Psychology and Psychiatry, 47, 313337.CrossRefGoogle ScholarPubMed
Eley, T. C., Bolton, D., O'Connor, T. G., Perrin, S., Smith, P., & Plomin, R. (2003). A twin study of anxiety-related behaviours in preschool children. Journal of Child Psychology and Psychiatry, 44, 945960.CrossRefGoogle Scholar
Eley, T. C., Rijsdijk, F. V., Perrin, S., O'Connor, T. G., & Bolton, D. (2008). A multivariate genetic analysis of specific phobia, separation anxiety and social phobia in early childhood. Journal of Abnormal Child Psychology, 36, 839848.Google Scholar
Erhardt, A., Czibere, L., Roeske, D., Lucae, S., Unschuld, P. G., Ripke, S., et al. (2011). TMEM132D, a new candidate for anxiety phenotypes: Evidence from human and mouse studies. Molecular Psychiatry, 16, 647663.CrossRefGoogle ScholarPubMed
Ernst, C., Deleva, V., Deng, X., Sequeira, A., Pomarenski, A., Klempan, T., et al. (2009). Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Archives of General Psychiatry, 66, 2232.CrossRefGoogle ScholarPubMed
Ernst, C., Wanner, B., Brezo, J., Vitaro, F., Tremblay, R., & Turecki, G. (2011). A deletion in tropomyosin-related kinase B and the development of human anxiety. Biological Psychiatry, 69, 604607.Google Scholar
Essau, C. A., Conradt, J., & Petermann, F. (2000). Frequency, comorbidity, and psychosocial impairment of anxiety disorders in German adolescents. Journal of Anxiety Disorders, 14, 263279.Google Scholar
Etkin, A. (2010). Functional neuroanatomy of anxiety: A neural circuit perspective. Current Topics in Behavioral Neurosciences, 2, 251277.Google Scholar
Ezpeleta, L., Keeler, G., Erkanli, A., Costello, E. J., & Angold, A. (2001). Epidemiology of psychiatric disability in childhood and adolescence. Journal of Child Psychology and Psychiatry, 42, 901914.Google Scholar
Feng, X., Shaw, D. S., & Silk, J. S. (2008). Developmental trajectories of anxiety symptoms among boys across early and middle childhood. Journal of Abnormal Psychology, 117, 3247.CrossRefGoogle ScholarPubMed
Flint, J. (2003). Animal models of anxiety and their molecular dissection. Seminars in Cell and Developmental Biology, 14, 3742.Google Scholar
Flint, J., Shifman, S., Munafo, M., & Mott, R. (2008). Genetic variants in major depression. Novartis Foundation Symposium, 289, 2332; discussion, 33–42, 87–93.Google Scholar
Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005). Behavioral inhibition: Linking biology and behavior within a developmental framework. Annual Review of Psychology, 56, 235262.Google Scholar
Franic, S., Middeldorp, C. M., Dolan, C. V., Ligthart, L., & Boomsma, D. I. (2010). Childhood and adolescent anxiety and depression: Beyond heritability. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 820829.Google Scholar
Frustaci, A., Pozzi, G., Gianfagna, F., Manzoli, L., & Boccia, S. (2008). Meta-analysis of the brain-derived neurotrophic factor gene (BDNF) Val66Met polymorphism in anxiety disorders and anxiety-related personality traits. Neuropsychobiology, 58, 163170.Google Scholar
Gauderman, W. J., & Morrison, J. M. (2006). QUANTO 1.2.4: A computer program for power and sample size calculations for genetic-epidemiology studies. Retrieved from http://hydra.usc.edu/gxe/Google Scholar
Gillespie, N. A., Kirk, K. M., Evans, D. M., Heath, A. C., Hickie, I. B., & Martin, N. G. (2004). Do the genetic or environmental determinants of anxiety and depression change with age? A longitudinal study of Australian twins. Twin Research, 7, 3953.Google Scholar
Goldsmith, H. H., & Lemery, K. S. (2000). Linking temperamental fearfulness and anxiety symptoms: A behavior–genetic perspective. Biological Psychiatry, 48, 11991209.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.Google Scholar
Grafstein-Dunn, E., Young, K. H., Cockett, M. I., & Khawaja, X. Z. (2001). Regional distribution of regulators of G-protein signaling (RGS) 1, 2, 13, 14, 16, and GAIP messenger ribonucleic acids by in situ hybridization in rat brain. Brain Research. Molecular Brain Research, 88, 113123.Google Scholar
Graybiel, A. M., & Rauch, S. L. (2000). Toward a neurobiology of obsessive–compulsive disorder. Neuron, 28, 343347.Google Scholar
Greenberg, P. E., Sisitsky, T., Kessler, R. C., Finkelstein, S. N., Berndt, E. R., Davidson, J. R., et al. (1999). The economic burden of anxiety disorders in the 1990s. Journal of Clinical Psychiatry, 60, 427435.Google Scholar
Gregory, A. M., Caspi, A., Moffitt, T. E., Koenen, K., Eley, T. C., & Poulton, R. (2007). Juvenile mental health histories of adults with anxiety disorders. American Journal of Psychiatry, 164, 301308.Google Scholar
Gregory, A. M., & Eley, T. C. (2007). Genetic influences on anxiety in children: What we've learned and where we're heading. Clinical Child & Family Psychology Review, 10, 199212.CrossRefGoogle ScholarPubMed
Grimm, K. J., Ram, N., & Hamagami, F. (2011). Nonlinear growth curves in developmental research. Child Development, 82, 13571371.CrossRefGoogle ScholarPubMed
Hallett, V., Ronald, A., Rijsdijk, F., & Eley, T. C. (2009). Phenotypic and genetic differentiation of anxiety-related behaviors in middle childhood. Depression and Anxiety, 26, 316324.Google Scholar
Heim, C., & Nemeroff, C. B. (2009). Neurobiology of posttraumatic stress disorder. CNS Spectrums, 14(Suppl. 1), 1324.Google ScholarPubMed
Hettema, J. M., Neale, M. C., & Kendler, K. S. (2001). A review and meta-analysis of the genetic epidemiology of anxiety disorders. American Journal of Psychiatry, 158, 15681578.Google Scholar
Hettema, J. M., Prescott, C. A., Myers, J. M., Neale, M. C., & Kendler, K. S. (2005). The structure of genetic and environmental risk factors for anxiety disorders in men and women. Archives of General Psychiatry, 62, 182189.Google Scholar
Hewitt, J. K. (2012). Editorial policy on candidate gene association and candidate gene-by-environment interaction studies of complex traits. Behavior Genetics, 42, 12.Google Scholar
Hirshfeld-Becker, D. R., Biederman, J., Henin, A., Faraone, S. V., Davis, S., Harrington, K., et al. (2007). Behavioral inhibition in preschool children at risk is a specific predictor of middle childhood social anxiety: A five-year follow-up. Journal of Developmental and Behavioral Pediatrics, 28, 225233.Google Scholar
Hirshfeld-Becker, D. R., Micco, J. A., Simoes, N. A., & Henin, A. (2008). High-risk studies and developmental antecedents of anxiety disorders. American Journal of Medical Genetics C: Seminars in Medical Genetics, 148C, 99117.Google Scholar
Johansen, J. P., Cain, C. K., Ostroff, L. E., & LeDoux, J. E. (2011). Molecular mechanisms of fear learning and memory. Cell, 147, 509524.Google Scholar
Kagan, J., & Snidman, N. (2004). The long shadow of temperament. Cambridge, MA: Harvard University Press.Google Scholar
Kagan, J., Snidman, N., Kahn, V., & Towsley, S. (2007). The preservation of two infant temperaments into adolescence. Monographs of the Society for Research in Child Development, 72, 175; discussion, 76–91.Google Scholar
Kawamura, Y., Otowa, T., Koike, A., Sugaya, N., Yoshida, E., Yasuda, S., et al. (2011). A genome-wide CNV association study on panic disorder in a Japanese population. Journal of Human Genetics, 56, 852856.Google Scholar
Kendler, K. S., Gardner, C. O., Annas, P., & Lichtenstein, P. (2008). The development of fears from early adolesence to young adulthood: A multivariate study. Psychological Medicine, 38, 17591769.Google Scholar
Kendler, K. S., Gardner, C. O., Annas, P., Neale, M. C., Eaves, L. J., & Lichtenstein, P. (2008). A longitudinal twin study of fears from middle childhood to early adulthood: Evidence for a developmentally dynamic genome. Archives of General Psychiatry, 65, 421429.Google Scholar
Kendler, K. S., Gardner, C. O., & Lichtenstein, P. (2008). A developmental twin study of symptoms of anxiety and depression: Evidence for genetic innovation and attenuation. Psychological Medicine, 38, 15671575.Google Scholar
Kendler, K. S., & Neale, M. C. (2010). Endophenotype: A conceptual analysis. Molecular Psychiatry, 15, 789797.Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1992). Major depression and generalized anxiety disorder: Same genes, (partly) different environments? Archives of General Psychiatry, 49, 716722.CrossRefGoogle ScholarPubMed
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929937.Google Scholar
Kerner, B., North, K. E., & Fallin, M. D. (2009). Use of longitudinal data in genetic studies in the genome-wide association studies era: Summary of Group 14. Genetic Epidemiology, 33(Suppl. 1), S93S98.Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593602.CrossRefGoogle ScholarPubMed
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.Google Scholar
Killgore, W. D., & Yurgelun-Todd, D. A. (2005). Social anxiety predicts amygdala activation in adolescents viewing fearful faces. NeuroReport, 16, 16711675.Google Scholar
Kim-Cohen, J., Caspi, A., Moffitt, T. E., Harrington, H., Milne, B. J., & Poulton, R. (2003). Prior juvenile diagnoses in adults with mental disorder: Developmental follow-back of a prospective-longitudinal cohort. Archives of General Psychiatry, 60, 709717.Google Scholar
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford Press.Google Scholar
Koenen, K. C., Amstadter, A. B., Ruggiero, K. J., Acierno, R., Galea, S., Kilpatrick, D. G., et al. (2009). RGS2 and generalized anxiety disorder in an epidemiologic sample of hurricane-exposed adults. Depression and Anxiety, 26, 309315.Google Scholar
Letcher, P., Sanson, A., Smart, D., & Toumbourou, J. W. (2012). Precursors and correlates of anxiety trajectories from late childhood to late adolescence. Journal of Clinical Child and Adolescent Psychology.Google Scholar
Leygraf, A., Hohoff, C., Freitag, C., Willis-Owen, S. A., Krakowitzky, P., Fritze, J., et al. (2006). Rgs 2 gene polymorphisms as modulators of anxiety in humans? Journal of Neural Transmission, 113, 19211925.Google Scholar
Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural equation analysis (4th ed.). Mahwah, NJ: Erlbaum.Google Scholar
Malhotra, D., & Sebat, J. (2012). CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell, 148, 12231241.CrossRefGoogle ScholarPubMed
Marmorstein, N. R., White, H., Chung, T., Hipwell, A., Stouthamer-Loeber, M., & Loeber, R. (2010). Associations between first use of substances and change in internalizing symptoms among girls: Differences by symptom trajectory and substance use type. Journal of Clinical Child and Adolescent Psychology, 39, 545558.CrossRefGoogle ScholarPubMed
Maron, E., Hettema, J. M., & Shlik, J. (2010). Advances in molecular genetics of panic disorder. Molecular Psychiatry, 15, 681701.CrossRefGoogle ScholarPubMed
McArdle, J. J., Nesselroade, J. R., Schinka, J. A., & Velicer, W. F. (2003). Growth curve analysis in contemporary psychological research. New York: Wiley.Google Scholar
McGrath, L. M., Mustanski, B., Metzger, A., Pine, D. S., Kistner-Griffin, E., Cook, E. H., et al. (in press). A latent modeling approach to genotype–phenotype relationships: Maternal problem behavior clusters, prenatal smoking, and MAOA genotype. Archives of Women's Mental Health.Google Scholar
McQueen, M. B., Bertram, L., Lange, C., Becker, K. D., Albert, M. S., Tanzi, R. E., et al. (2007). Exploring candidate gene associations with neuropsychological performance. American Journal of Medical Genetics B: Neuropsychiatric Genetics, 144B, 987991.Google Scholar
Medland, S. E., & Neale, M. C. (2010). An integrated phenomic approach to multivariate allelic association. European Journal of Human Genetics, 18, 233239.Google Scholar
Merikangas, K. R., Ames, M., Cui, L., Stang, P. E., Ustun, T. B., Von Korff, M., et al. (2007). The impact of comorbidity of mental and physical conditions on role disability in the US adult household population. Archives of General Psychiatry, 64, 11801188.Google Scholar
Merikangas, K. R., He, J. P., Brody, D., Fisher, P. W., Bourdon, K., & Koretz, D. S. (2010). Prevalence and treatment of mental disorders among US children in the 2001–2004 NHANES. Pediatrics, 125, 7581.Google Scholar
Merikangas, K. R., He, J. P., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., et al. (2010). Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication—Adolescent Supplement (NCS-A). Journal of the American Academy of Child & Adolescent Psychiatry, 49, 980989.Google Scholar
Mian, N. D., Godoy, L., Briggs-Gowan, M. J., & Carter, A. S. (2011). Patterns of anxiety symptoms in toddlers and preschool-age children: Evidence of early differentiation. Journal of Anxiety Disorders.Google Scholar
Middeldorp, C. M., Cath, D. C., Van Dyck, R., & Boomsma, D. I. (2005). The comorbidity of anxiety and depression in the perspective of genetic epidemiology: A review of twin and family studies. Psychological Medicine, 35, 611624.Google Scholar
Middeldorp, C. M., Slof-Op ‘t Landt, M. C., Medland, S. E., van Beijsterveldt, C. E., Bartels, M., Willemsen, G., et al. (2010). Anxiety and depression in children and adults: Influence of serotonergic and neurotrophic genes? Genes, Brain and Behavior, 9, 808816.CrossRefGoogle ScholarPubMed
Mosing, M. A., Gordon, S. D., Medland, S. E., Statham, D. J., Nelson, E. C., Heath, A. C., et al. (2009). Genetic and environmental influences on the comorbidity between depression, panic disorder, agoraphobia, and social phobia: A twin study. Depression and Anxiety, 26, 10041011.Google Scholar
Mouri, K., Hishimoto, A., Fukutake, M., Nishiguchi, N., Shirikawa, O., & Maeda, K. (2009). Association study of RGS2 gene polymorphisms with panic disorder in Japanese. Kobe Journal of Medical Sciences, 55, E116E121.Google Scholar
Muinos-Gimeno, M., Espinosa-Parrilla, Y., Guidi, M., Kagerbauer, B., Sipila, T., Maron, E., et al. (2011). Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biological Psychiatry, 69, 526533.Google Scholar
Muthen, B. O. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. In Collins, L. M. & Sayer, A. G. (Eds.), New methods for the analysis of change (pp. 291322). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Muthen, B. O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81117.Google Scholar
Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric, group-based approach. Psychological Methods, 4, 139157.Google Scholar
Neale, B. M., Medland, S., Ripke, S., Anney, R. J., Asherson, P., Buitelaar, J., et al. (2010). Case-control genome-wide association study of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 906920.Google Scholar
Nes, R. B., Roysamb, E., Reichborn-Kjennerud, T., Harris, J. R., & Tambs, K. (2007). Symptoms of anxiety and depression in young adults: Genetic and environmental influences on stability and change. Twin Research and Human Genetics, 10, 450461.Google Scholar
Neubig, R. R., & Siderovski, D. P. (2002). Regulators of G-protein signalling as new central nervous system drug targets. Nature Reviews Drug Discovery, 1, 187197.Google Scholar
Newman, D. L., Moffitt, T. E., Caspi, A., Magdol, L., Silva, P. A., & Stanton, W. R. (1996). Psychiatric disorder in a birth cohort of young adults: Prevalence, comorbidity, clinical significance, and new case incidence from ages 11 to 21. Journal of Consulting and Clinical Psychology, 64, 552562.Google Scholar
Nigg, J. T. (2006). Temperament and developmental psychopathology. Journal of Child Psychology and Psychiatry, 47, 395422.Google Scholar
Ogliari, A., Spatola, C. A., Pesenti-Gritti, P., Medda, E., Penna, L., Stazi, M. A., et al. (2010). The role of genes and environment in shaping co-occurrence of DSM-IV defined anxiety dimensions among Italian twins aged 8–17. Journal of Anxiety Disorders, 24, 433439.Google Scholar
Oliveira-Dos-Santos, A. J., Matsumoto, G., Snow, B. E., Bai, D., Houston, F. P., Whishaw, I. Q., et al. (2000). Regulation of T cell activation, anxiety, and male aggression by RGS2. Proceedings of the National Academy of Sciences, 97, 1227212277.Google Scholar
Otowa, T., Shimada, T., Kawamura, Y., Sugaya, N., Yoshida, E., Inoue, K., et al. (2011). Association of RGS2 variants with panic disorder in a Japanese population. American Journal of Medical Genetics B: Neuropsychiatric Genetics, 156B, 430434.Google Scholar
Otowa, T., Tanii, H., Sugaya, N., Yoshida, E., Inoue, K., Yasuda, S., et al. (2010). Replication of a genome-wide association study of panic disorder in a Japanese population. Journal of Human Genetics, 55, 9196.Google Scholar
Otowa, T., Yoshida, E., Sugaya, N., Yasuda, S., Nishimura, Y., Inoue, K., et al. (2009). Genome-wide association study of panic disorder in the Japanese population. Journal of Human Genetics, 54, 122126.Google Scholar
Perez-Edgar, K., & Fox, N. A. (2005). Temperament and anxiety disorders. Child and Adolescent Psychiatric Clinics of North America, 14, 681706.Google Scholar
Petersen, I. T., Bates, J. E., Goodnight, J. A., Dodge, K. A., Lansford, J. E., Pettit, G. S., et al. (2012). Interaction between serotonin transporter polymorphism (5-HTTLPR) and stressful life events in adolescents’ trajectories of anxious/depressed symptoms. Developmental Psychology.Google Scholar
Psychiatric GWAS Consortium. (2012). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry. Advance online publication. doi:10.1038/mp.2012.21Google Scholar
Pine, D. S. (2007). Research review: A neuroscience framework for pediatric anxiety disorders. Journal of Child Psychology and Psychiatry, 48, 631648.Google Scholar
Pine, D. S., Cohen, P., Gurley, D., Brook, J., & Ma, Y. (1998). The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Archives of General Psychiatry, 55, 5664.Google Scholar
Plomin, R., Emde, R. N., Braungart, J. M., Campos, J., Corley, R., Fulker, D. W., et al. (1993). Genetic change and continuity from fourteen to twenty months: The MacArthur Longitudinal Twin Study. Child Development, 64, 13541376.CrossRefGoogle ScholarPubMed
Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10, 872878.Google Scholar
Rapee, R. M., Schniering, C. A., & Hudson, J. L. (2009). Anxiety disorders during childhood and adolescence: Origins and treatment. Annual Review of Clinical Psychology, 5, 311341.Google Scholar
Rijsdijk, F. V., Snieder, H., Ormel, J., Sham, P., Goldberg, D. P., & Spector, T. D. (2003). Genetic and environmental influences on psychological distress in the population: General Health Questionnaire analyses in UK twins. Psychological Medicine, 33, 793801.Google Scholar
Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., et al. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43, 969976.Google Scholar
Roberson-Nay, R., Eaves, L. J., Hettema, J. M., Kendler, K. S., & Silberg, J. L. (2012). Childhood separation anxiety disorder and adult-onset panic attacks share a common genetic diathesis. Depression and Anxiety, 29, 320327.Google Scholar
Robinson, J. L., Kagan, J., Reznick, J. S., & Corley, R. (1992). The heritability of inhibited and uninhibited behavior: A twin study. Developmental Psychology, 28, 10301037.Google Scholar
Rosenbaum, J. F., Biederman, J., Hirshfeld-Becker, D. R., Kagan, J., Snidman, N., Friedman, D., et al. (2000). A controlled study of behavioral inhibition in children of parents with panic disorder and depression. American Journal of Psychiatry, 157, 20022010.Google Scholar
Rothbart, M. K. (2007). Temperament, development, and personality. Current Directions in Psychological Science, 16, 207212.Google Scholar
Sakai, J. T., Boardman, J. D., Gelhorn, H. L., Smolen, A., Corley, R. P., Huizinga, D., et al. (2010). Using trajectory analyses to refine phenotype for genetic association: Conduct problems and the serotonin transporter (5HTTLPR). Psychiatric Genetics, 20, 199206.Google Scholar
Schulze, T. G., & McMahon, F. J. (2004). Defining the phenotype in human genetic studies: Forward genetics and reverse phenotyping. Human Heredity, 58, 131138.Google Scholar
Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Adolescent social anxiety as an outcome of inhibited temperament in childhood. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 10081015.Google Scholar
Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science, 300, 19521953.Google Scholar
Semplicini, A., Lenzini, L., Sartori, M., Papparella, I., Calo, L. A., Pagnin, E., et al. (2006). Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. Journal of Hypertension, 24, 11151124.Google Scholar
Shin, L. M., & Liberzon, I. (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology, 35, 169191.Google Scholar
Sklar, P., Ripke, S., Scott, L. J., Andreassen, O. A., Cichon, S., Craddock, N., et al. (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 43, 977983.Google Scholar
Smoller, J. W., Lunetta, K. L., & Robins, J. (2000). Implications of comorbidity and ascertainment bias for identifying disease genes. American Journal of Medical Genetics, 96, 817822.Google Scholar
Smoller, J. W., Paulus, M. P., Fagerness, J. A., Purcell, S., Yamaki, L. H., Hirshfeld-Becker, D., et al. (2008). Influence of RGS2 on anxiety-related temperament, personality, and brain function. Archives of General Psychiatry, 65, 298308.CrossRefGoogle ScholarPubMed
Smoller, J. W., Rosenbaum, J. F., Biederman, J., Kennedy, J., Dai, D., Racette, S. R., et al. (2003). Association of a genetic marker at the corticotropin-releasing hormone locus with behavioral inhibition. Biological Psychiatry, 54, 13761381.Google Scholar
Smoller, J. W., Yamaki, L. H., Fagerness, J. A., Biederman, J., Racette, S., Laird, N. M., et al. (2005). The corticotropin-releasing hormone gene and behavioral inhibition in children at risk for panic disorder. Biological Psychiatry, 57, 14851492.Google Scholar
Stein, M. B., Goldin, P. R., Sareen, J., Zorrilla, L. T., & Brown, G. G. (2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Archives of General Psychiatry, 59, 10271034.Google Scholar
Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164, 318327.Google Scholar
Sullivan, P. F. (2007). Spurious genetic associations. Biological Psychiatry, 61, 11211126.Google Scholar
Sullivan, P. F. (2010). The psychiatric GWAS consortium: Big science comes to psychiatry. Neuron, 68, 182186.CrossRefGoogle ScholarPubMed
Sullivan, P. F. (2012). Don't give up on GWAS. Molecular Psychiatry, 17, 23.Google Scholar
Tambs, K., Czajkowsky, N., Roysamb, E., Neale, M. C., Reichborn-Kjennerud, T., Aggen, S. H., et al. (2009). Structure of genetic and environmental risk factors for dimensional representations of DSM-IV anxiety disorders. British Journal of Psychiatry, 195, 301307.Google Scholar
Trzaskowski, M., Zavos, H. M., Haworth, C. M., Plomin, R., & Eley, T. C. (2011). Stable genetic influence on anxiety-related behaviours across middle childhood. Journal of Abnormal Child Psychology.Google Scholar
Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., et al. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459, 528533.Google Scholar
Webb, B. T., Guo, A. Y., Maher, B. S., Zhao, Z., van den Oord, E. J., Kendler, K. S., et al. (2012). Meta-analyses of genome-wide linkage scans of anxiety-related phenotypes. European Journal of Human Genetics.Google Scholar
Weissman, M. M., Wickramaratne, P., Nomura, Y., Warner, V., Verdeli, H., Pilowsky, D. J., et al. (2005). Families at high and low risk for depression: A 3-generation study. Archives of General Psychiatry, 62, 2936.Google Scholar
Wessman, J., Paunio, T., Tuulio-Henriksson, A., Koivisto, M., Partonen, T., Suvisaari, J., et al. (2009). Mixture model clustering of phenotype features reveals evidence for association of DTNBP1 to a specific subtype of schizophrenia. Biological Psychiatry, 66, 990996.Google Scholar
Wray, N. R., James, M. R., Gordon, S. D., Dumenil, T., Ryan, L., Coventry, W. L., et al. (2009). Accurate, large-scale genotyping of 5HTTLPR and flanking single nucleotide polymorphisms in an association study of depression, anxiety, and personality measures. Biological Psychiatry, 66, 468476.Google Scholar
Yalcin, B., Willis-Owen, S. A., Fullerton, J., Meesaq, A., Deacon, R. M., Rawlins, J. N., et al. (2004). Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nature Genetics, 36, 11971202.Google Scholar
Zintzaras, E., & Sakelaridis, N. (2007). Is 472G/A catechol-O-methyl-transferase gene polymorphism related to panic disorder? Psychiatric Genetics, 17, 267273.Google Scholar