Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T00:57:30.096Z Has data issue: false hasContentIssue false

An experimental test of the fetal programming hypothesis: Can we reduce child ontogenetic vulnerability to psychopathology by decreasing maternal depression?

Published online by Cambridge University Press:  02 August 2018

Elysia Poggi Davis*
Affiliation:
University of Denver University of California, Irvine
Benjamin L. Hankin
Affiliation:
University of Illinois
Danielle A. Swales
Affiliation:
University of Denver
M. Camille Hoffman
Affiliation:
University of Colorado School of Medicine
*
Address correspondence and reprint requests to: Elysia Poggi Davis, Department of Psychology, 2155 South Race Street, University of Denver, Denver, CO 80208-3500; E-mail: [email protected].

Abstract

Maternal depression is one of the most common prenatal complications, and prenatal maternal depression predicts many child psychopathologies. Here, we apply the fetal programming hypothesis as an organizational framework to address the possibility that fetal exposure to maternal depressive symptoms during pregnancy affects fetal development of vulnerabilities and risk mechanisms, which enhance risk for subsequent psychopathology. We consider four candidate pathways through which maternal prenatal depression may affect the propensity of offspring to develop later psychopathology across the life span: brain development, physiological stress regulation (hypothalamic–pituitary–adrenocortical axis), negative emotionality, and cognitive (effortful) control. The majority of past research has been correlational, so potential causal conclusions have been limited. We describe an ongoing experimental test of the fetal programming influence of prenatal maternal depressive symptoms using a randomized controlled trial design. In this randomized controlled trial, interpersonal psychotherapy is compared to enhanced usual care among distressed pregnant women to evaluate whether reducing prenatal maternal depressive symptoms has a salutary impact on child ontogenetic vulnerabilities and thereby reduces offspring's risk for emergence of later psychopathology.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by the National Institutes of Health Grants R01 MH109662 and P50 MH096889.

References

Accortt, E. E., Cheadle, A., & Schetter, C. D. (2015). Prenatal depression and adverse birth outcomes: An updated systematic review. Maternal and Child Health Journal, 19, 13061337. doi:10.1007/s10995-014-1637-2Google Scholar
Adam, E. K., Doane, L. D., Zinbarg, R. E., Mineka, S., Craske, M. G., & Griffith, J. W. (2010). Prospective prediction of major depressive disorder from cortisol awakening responses in adolescence. Psychoneuroendocrinology, 35, 921931. doi:10.1016/j.psyneuen.2009.12.007Google Scholar
Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., & Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 83, 2541. doi:10.1016/j.psyneuen.2017.05.018Google Scholar
Adam, E. K., Vrshek-Schallhorn, S., Kendall, A. D., Mineka, S., Zinbarg, R. E., & Craske, M. G. (2014). Prospective associations between the cortisol awakening response and first onsets of anxiety disorders over a six-year follow-up—2013 Curt Richter Award Winner. Psychoneuroendocrinology, 44, 4759. doi:10.1016/j.psyneuen.2014.02.014Google Scholar
Aoki, Y., Inokuchi, R., Nakao, T., & Yamasue, H. (2013). Neural bases of antisocial behavior: A voxel-based meta-analysis. Social Cognitive and Affective Neuroscience, 9, 12231231. doi:10.1093/scan/nst104Google Scholar
Avitsur, R., Grinshpahet, R., Goren, N., Weinstein, I., Kirshenboim, O., & Chlebowski, N. (2016). Prenatal SSRI alters the hormonal and behavioral responses to stress in female mice: Possible role for glucocorticoid resistance. Hormone Behavior, 84, 4149. doi:10.1016/j.yhbeh.2016.06.001Google Scholar
Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18, 8994. doi:10.1111/j.1467-8721.2009.01615.xGoogle Scholar
Barker, D. (2003). The midwife, the coincidence, and the hypothesis. British Medical Journal, 327, 14281430. doi:10.1136/bmj.327.7429.1428Google Scholar
Barker, D. J. (1998). In utero programming of chronic disease. Clinical Science, 95, 115128. doi:10.1042/cs0950115Google Scholar
Barker, D. J., Eriksson, J. G., Forsen, T., & Osmond, C. (2002). Fetal origins of adult disease: Strength of effects and biological basis. International Journal of Epidemiology, 31, 12351239. doi:10.1093/ije/31.6.1235Google Scholar
Barker, E. D., Jaffee, S. R., Uher, R., & Maughan, B. (2011). The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment. Depression and Anxiety, 28, 696702. doi:10.1002/da.20856Google Scholar
Barry, T. J., Murray, L., Pasco Fearon, R. M., Moutsiana, C., Cooper, P., Goodyer, I. M., … Halligan, S. L. (2015). Maternal postnatal depression predicts altered offspring biological stress reactivity in adulthood. Psychoneuroendocrinology, 52, 251260. doi:10.1016/j.psyneuen.2014.12.003Google Scholar
Bates, J. E., Pettit, G. S., Dodge, K. A., & Ridge, B. (1998). Interaction of temperamental resistance to control and restrictive parenting in the development of externalizing behavior. Developmental Psychology, 34, 982. doi:10.1037/0012-1649.34.5.982Google Scholar
Battle, C. L., Salisbury, A. L., Schofield, C. A., & Ortiz-Hernandez, S. (2013). Perinatal antidepressant use: Understanding women's preferences and concerns. Journal of Psychiatric Practice, 19, 443453. doi:10.1097/01.pra.0000438183.74359.46Google Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology, 98, 338350. doi:10.1016/j.ijpsycho.2015.08.004Google Scholar
Bergman, K., Sarkar, P., Glover, V., & O'Connor, T. G. (2010). Maternal prenatal cortisol and infant cognitive development: Moderation by infant-mother attachment. Biological Psychiatry, 67, 10261032. doi:10.1016/j.biopsych.2010.01.002Google Scholar
Bhat, A., Chowdayya, R., Selvam, S., Khan, A., Kolts, R., & Srinivasan, K. (2015). Maternal prenatal psychological distress and temperament in 1–4 month old infants: A study in a non-Western population. Infant Behavior and Development, 39, 3541. doi:10.1016/j.infbeh.2014.12.002Google Scholar
Boes, A. D., McCormick, L. M., Coryell, W. H., & Nopoulos, P. (2008). Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biological Psychiatry, 63, 391397. doi:10.1016/j.biopsych.2007.07.018Google Scholar
Borue, X., Chen, J., & Condron, B. G. (2007). Developmental effects of SSRIs: Lessons learned from animal studies. International Journal of Developmental Neuroscience, 25, 341347. doi:10.1016/j.ijdevneu.2007.06.003Google Scholar
Boukhris, T., Sheehy, O., Mottron, L., & Berard, A. (2016). Antidepressant use during pregnancy and the risk of autism spectrum disorder in children. Journal of the American Medical Association Pediatrics, 170, 117124. doi:10.1001/jamapediatrics.2015.3356Google Scholar
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. Acta Paediatrica, 422, 2733. doi:10.1111/j.1651-2227.1997.tb18340.xGoogle Scholar
Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4, 7896. doi:10.1093/cercor/4.1.78Google Scholar
Braithwaite, E. C., Murphy, S. E., & Ramchandani, P. G. (2016). Effects of prenatal depressive symptoms on maternal and infant cortisol reactivity. Archives of Women's Mental Health, 19, 581590. doi:10.1007/s00737-016-0611-yGoogle Scholar
Brennan, P. A., Pargas, R., Walker, E. F., Green, P., Newport, D. J., & Stowe, Z. (2008). Maternal depression and infant cortisol: Influences of timing, comorbidity and treatment. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 49, 10991107. doi:10.1111/j.1469-7610.2008.01914Google Scholar
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron, 74, 9901004. doi:10.1016/j.neuron.2012.06.002Google Scholar
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30, 846856. doi:10.1016/j.psyneuen.2005.02.010Google Scholar
Buss, C., Davis, E. P., Shahbaba, B., Pruessner, J. C., Head, K., & Sandman, C. A. (2012). Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences, 109, E1312E1319. doi:10.1073/pnas.1201295109Google Scholar
Capron, L. E., Glover, V., Pearson, R. M., Evans, J., O'Connor, T. G., Stein, A., … Ramchandani, P. G. (2015). Associations of maternal and paternal antenatal mood with offspring anxiety disorder at age 18 years. Journal of Affective Disorders, 187, 2026. doi:10.1016/j.jad.2015.08.012Google Scholar
Caspi, A., Henry, B., McGee, R. O., Moffitt, T. E., & Silva, P. A. (1995). Temperamental origins of child and adolescent behavior problems: From age three to age fifteen. Child Development, 66, 5568. doi:10.2307/1131190Google Scholar
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., … Poulton, R. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119137. doi:10.1177/2167702613497473Google Scholar
Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders: Longitudinal evidence from a birth cohort. Archives of General Psychiatry, 53, 10331039. doi:10.1001/archpsyc.1996.01830110071009Google Scholar
Chen, M. C., Hamilton, J. P., & Gotlib, I. H. (2010). Decreased hippocampal volume in healthy girls at risk of depression. Archives of General Psychiatry, 67, 270276. doi:10.1001/archgenpsychiatry.2009.202Google Scholar
Clark, R., Tluczek, A., & Wenzel, A. (2003). Psychotherapy for postpartum depression: A preliminary report. American Journal of Orthopsychiatry, 73, 441454. doi:10.1037/0002-9432.73.4.441Google Scholar
Class, Q. A., Rickert, M. E., Larsson, H., Lichtenstein, P., & D'Onofrio, B. M. (2014). Fetal growth and psychiatric and socioeconomic problems: Population-based sibling comparison. British Journal of Psychiatry, 205, 355361. doi:10.1192/bjp.bp.113.143693Google Scholar
Clemens, C. C., Castro, V. M., Blumenthal, S. R., Rosenfield, H. R., Murphy, S. N., Fava, M., & Robinson, E. B. (2015). Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Molecular Psychiatry, 20, 727734. doi:10.1038/mp.2014.90Google Scholar
Cole, M. W., Repovš, G., & Anticevic, A. (2014). The frontoparietal control system: A central role in mental health. Neuroscientist, 20, 652664. doi:10.1177/1073858414525995Google Scholar
Cowan, W. M. (1979). The development of the brain. Scientific American, 241, 113133. doi:10.1038/scientificamerican0979-112Google Scholar
Croen, L. A., Grether, J. K., Yoshida, C. K., Odouli, R., & Hendrick, V. (2011). Antidepressant use during pregnancy and childhood autism spectrum disorders. Archives of General Psychiatry, 68, 11041112. doi:10.1001/archgenpsychiatry.2011.73Google Scholar
Cuijpers, P., Cristea, I. A., Karyotaki, E., Reijnders, M., & Huibers, M. J. H. (2016). How effective are cognitive behavior therapies for major depression and anxiety disorders? A meta-analytic update of the evidence. World Psychiatry, 15, 245258. doi:10.1002/wps.20346Google Scholar
Cuijpers, P., Karyotaki, E., Weitz, E., Andersson, G., Hollon, S. D., & van Straten, A. (2014). The effects of psychotherapies for major depression in adults on remission, recovery and improvement: A meta-analysis. Journal of Affective Disorders, 159, 118126. doi:10.1016/j.jad.2014.02.026Google Scholar
Danielson, C. K., Hankin, B. L., & Badanes, L. S. (2015). Youth offspring of mothers with posttraumatic stress disorder have altered stress reactivity in response to a laboratory stressor. Psychoneuroendocrinology, 53, 170178. doi:10.1016/j.psyneuen.2015.01.001Google Scholar
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 737746. doi:10.1097/chi.0b013e318047b775Google Scholar
Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, 52, 119129. doi:10.1111/j.1469-7610.2010.02314.xGoogle Scholar
Davis, E. P., & Pfaff, D. (2014). Sexually dimorphic responses to early adversity: Implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology, 49, 1125. doi:10.1016/j.psyneuen.2014.06.014Google Scholar
Davis, E. P., & Sandman, C. A. (2012). Prenatal psychobiological predictors of anxiety risk in preadolescent children. Psychoneuroendocrinology, 37, 12241233. doi:10.1016/j.psyneuen.2011.12.016Google Scholar
Davis, E. P., Snidman, N., Wadhwa, P. D., Dunkel Schetter, C., Glynn, L., & Sandman, C. A. (2004). Prenatal maternal anxiety and depression predict negative behavioral reactivity in infancy. Infancy, 6, 319331. doi:10.1207/s15327078in0603_1Google Scholar
Dennis, C., & Dowswell, T. (2013). Psychosocial and psychological interventions for preventing postpartum depression. Cochrane Database of Systematic Reviews, 2. doi:10.1002/14651858.CD001134.pub3Google Scholar
Denver, R. J. (1997). Environmental stress as a developmental cue: Corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Hormone Behavior, 31, 169179. doi:10.1006/hbeh.1997.1383Google Scholar
Dougherty, L. R., Klein, D. N., Durbin, C. E., Hayden, E. P., & Olino, T. M. (2010). Temperamental positive and negative emotionality and children's depressive symptoms: A longitudinal prospective study from age three to age ten. Journal of Social and Clinical Psychology, 29, 462488. doi:10.1521/jscp.2010.29.4.462Google Scholar
Downey, G., & Coyne, J. C. (1990). Children of depressed parents: An integrative review. Psychological Bulletin, 108, 5076. doi:10.1037/0033-2909.108.1.50Google Scholar
Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T., Truong, C., … Byars, A. W. (2013). Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cerebral Cortex, 24, 29412950. doi:10.1093/cercor/bht151Google Scholar
Dunkel Schetter, C. (2009). Stress processes in pregnancy and preterm birth. Current Directions in Psychological Science, 18, 204209.Google Scholar
Eisenberg, N., Valiente, C., Spinrad, T. L., Cumberland, A., Liew, J., Reiser, M., … Losoya, S. H. (2009). Longitudinal relations of children's effortful control, impulsivity, and negative emotionality to their externalizing, internalizing, and co-occurring behavior problems. Developmental Psychology, 45, 988. doi:10.1037/a0016213Google Scholar
Eke, A., Saccone, G., & Berghella, V. (2016). Selective serotonin reuptake inhibitor (SSRI) use during pregnancy and risk of preterm birth: A systematic review and meta-analysis. British Journal of Obstetrics and Gynaecology, 123, 19001907. doi:10.1111/1471-0528.14144Google Scholar
El Marroun, H., Tiemeier, H., Muetzel, R. L., Thijssen, S., der Knaap, N. J. F., Jaddoe, V. W. V., … White, T. J. H. (2016). Prenatal exposure to selective serotonin reuptake inhibitors and non-verbal cognitive functioning in childhood. Depression and Anxiety, 33, 658666. doi:10.1002/da.22524Google Scholar
El Marroun, H., White, T. J., Fernandez, G., Jaddoe, V. W. V., Verhulst, F. C., Stricker, B. H., & Tiemeier, H. (2017). Prenatal exposure to selective serotonin reuptake inhibitors and non-verbal cognitive functioning in childhood. Journal of Psychopharmacology, 31, 346355. doi:10.1177/0269881116665335Google Scholar
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488. doi:10.1176/appi.ajp.2007.07030504Google Scholar
Evans, J., Heron, J., Francomb, H., Oke, S., & Golding, J. (2001). Cohort study of depressed mood during pregnancy and after childbirth. British Medical Journal, 323, 257260. doi:10.1136/bmj.323.7307.257Google Scholar
Evans, J., Melotti, R., Heron, J., Ramchandani, P., Wiles, N., Murray, L., & Stein, A. (2012). The timing of maternal depressive symptoms and child cognitive development: A longitudinal study. Journal of Child Psychology and Psychiatry, 53, 632640. doi:10.1111/j.1469-7610.2011.02513.xGoogle Scholar
Fernandes, M., Stein, A., Srinivasan, K., Menezes, G., & Ramchandani, P. G. (2015). Foetal exposure to maternal depression predicts cortisol responses in infants: Findings from rural South India. Child Care and Health Development, 41, 677686. doi:10.1111/cch.12186Google Scholar
Field, T., Diego, M., Dieter, J., Hernandez-Reif, M., Schanberg, S., Kuhn, C., … Bendell, D. (2004). Prenatal depression effects on the fetus and the newborn. Infant Behavior and Development, 27, 216229. doi:10.1016/j.infbeh.2003.09.010Google Scholar
Firestein, S. (2015). Failure: Why science is so successful. New York: Oxford University Press.Google Scholar
Foland-Ross, L. C., Gilbert, B. L., Joormann, J., & Gotlib, I. H. (2015). Neural markers of familial risk for depression: An investigation of cortical thickness abnormalities in healthy adolescent daughters of mothers with recurrent depression. Journal of Abnormal Psychology, 124, 476. doi:10.1037/abn0000050Google Scholar
Garber, J., Ciesla, J. A., McCauley, E., Diamond, G., & Schloredt, K. A. (2011). Remission of depression in parents: Links to healthy functioning in their children. Child Development, 82, 226243. doi:10.1111/j.1467-8624.2010.01552.xGoogle Scholar
Gavin, N. I., Gaynes, B. N., Lohr, K. N., Meltzer-Brody, S., Gartlehner, G., & Swinson, T. (2005). Perinatal depression: A systematic review of prevalence and incidence. Obstetrics and Gynecology, 106, 10711083. doi:10.1097/01.AOG.0000183597.31630.dbGoogle Scholar
Gaynes, B. N., Gavin, N., Meltzer-Brody, S., Lohr, K. N., Swinson, T., Gartlehner, G., … Miller, W. C. (2005). Perinatal depression: Prevalence, screening accuracy, and screening outcomes. Evidence Report/Technological Assessment (Summary), 119.Google Scholar
Gerardin, P., Wendland, J., Bodeau, N., Galin, A., Bialobos, S., Tordjman, S., … Cohen, D. (2011). Depression during pregnancy: Is the developmental impact earlier in boys? A prospective case-control study. Journal of Clinical Psychiatry, 72, 378387. doi:10.4088/JCP.09m05724bluGoogle Scholar
Gingrich, J. A., Malm, H., Ansorge, M. S., Brown, A., Sourander, A., Suri, D., … Weissman, M. M. (2017). New insights into how serotonin selective reuptake inhibitors shape the developing brain. Birth Defects Research, 109, 924932. doi:10.1002/bdr2.1085Google Scholar
Gjone, H., & Stevenson, J. (1997). A longitudinal twin study of temperament and behavior problems: Common genetic or environmental influences? Journal of the American Academy of Child & Adolescent Psychiatry, 36, 14481456. doi:10.1097/00004583-199710000-00028Google Scholar
Glover, V., O'Connor, T. G., & O'Donnell, K. (2010). Prenatal stress and the programming of the HPA axis. Neuroscience and Biobehavioral Reviews, 35, 1722. doi:10.1016/j.neubiorev.2009.11.008Google Scholar
Gluckman, P. D., & Hanson, M. A. (2004). Living with the past: Evolution, development, and patterns of disease. Science, 305, 17331736. doi:10.1126/science.1095292Google Scholar
Glynn, L. M., Dunkel Schetter, C., Hobel, C., & Sandman, C. A. (2008). Pattern of perceived stress and anxiety in pregnancy predict preterm birth. Health Psychology, 27, 4251. doi:10.1037/0278-6133.27.1.43Google Scholar
Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B., … Korgaonkar, M. S. (2015). Identification of a common neurobiological substrate for mental illness. Journal of the American Medical Association Psychiatry, 72, 305315. doi:10.1001/jamapsychiatry.2014.2206Google Scholar
Goodman, S. H., & Gotlib, I. H. (1999). Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. Psychological Review, 106, 458490. doi:10.1037/0033-295X.106.3.458Google Scholar
Goodman, S. H., Rouse, M. H., Connell, A. M., Broth, M. R., Hall, C. M., & Heyward, D. (2011). Maternal depression and child psychopathology: A meta-analytic review. Clinical Child and Family Psychology Review, 14, 127. doi:10.1007/s10567-010-0080-1Google Scholar
Grant, K., McMahon, C., Austin, M., Reilly, N., Leader, L., & Ali, S. (2009). Maternal prenatal anxiety, postnatal caregiving and infants' cortisol responses to the still-face procedure. Developmental Psychobiology, 51, 625637. doi:10.1002/dev.20397Google Scholar
Grigoriadis, S., VonderPorten, E. H., Mamisashvili, L., Eady, A., Tomlinson, G., Dennis, C., … Cheung, A. (2013). The effect of prenatal antidepressant exposure on neonatal adaptation: A systematic review and meta-analysis. Journal of Clinical Psychiatry, 74, e309e320. doi:10.4088/JCP.12r07967Google Scholar
Grigoriadis, S., VonderPorten, E. H., Mamisashvili, L., Tomlinson, G., Dennis, C. L., Koren, G., … Ross, L. E. (2013). The impact of maternal depression during pregnancy on perinatal outcomes: A systematic review and meta-analysis. Journal of Clinical Psychiatry, 74, e321e341. doi:10.4088/JCP.12r07968Google Scholar
Grote, N. K., Bridge, J. A., Gavin, A. R., Melville, J. L., Iyengar, S., & Katon, W. J. (2010). A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Archives of General Psychiatry, 67, 10121024. doi:10.1001/archgenpsychiatry.2010.111Google Scholar
Grote, N. K., Katon, W. J., Russo, J. E., Lohr, M. J., Curran, M., Galvin, E., & Carson, K. (2015). Collaborative care for perinatal depression in socioeconomically disadvantaged women: A randomized trial. Depression and Anxiety, 32, 821834. doi:10.1002/da.22405Google Scholar
Grote, N. K., Swartz, H. A., Geibel, S. L., Zuckoff, A., Houck, P. R., & Frank, E. (2009). A randomized controlled trial of culturally relevant, brief interpersonal psychotherapy for perinatal depression. Psychiatric Services, 60, 313321. doi:10.1176/ps.2009.60.3.313Google Scholar
Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14, 488501. doi:10.1038/nrn3524Google Scholar
Guerry, J. D., & Hastings, P. D. (2011). In search of HPA axis dysregulation in child and adolescent depression. Clinical Child and Family Psychology Review, 14, 135160. doi:10.1007/s10567-011-0084-5Google Scholar
Gunlicks, M. L., & Weissman, M. M. (2008). Change in child psychopathology with improvement in parental depression: A systematic review. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 379389. doi:10.1097/CHI.0b013e3181640805Google Scholar
Gunnar, M. R., & Vazquez, D. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (2nd ed.). Hoboken, NJ: Wiley.Google Scholar
Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C., Hulshoff Pol, H. E., & Kahn, R. S. (2012). Brain volumes in schizophrenia: A meta-analysis in over 18 000 subjects. Schizophrenia Bulletin, 39, 11291138. doi:10.1093/schbul/sbs118Google Scholar
Haltigan, J. D., Roisman, G. I., Susman, E. J., Barnett-Walker, K., & Monahan, K. C. (2011). Elevated trajectories of externalizing problems are associated with lower awakening cortisol levels in midadolescence. Developmental Psychology, 47, 472478. doi:10.1037/a0021911Google Scholar
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293319. doi:10.1146/annurev.clinpsy.1.102803.143938Google Scholar
Hankin, B. L., Davis, E. P., Snyder, H., Young, J. F., Glynn, L. M., & Sandman, C. A. (2017). Temperament factors and dimensional, latent bifactor models of child psychopathology: Transdiagnostic and specific associations in two youth samples. Psychiatry Research, 252, 139146. doi:10.1016/j.psychres.2017.02.061Google Scholar
Hankin, B. L., Snyder, H. R., Gulley, L. D., Schweizer, T. H., Bijttebier, P., Nelis, S., … Vasey, M. W. (2016). Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms. Development and Psychopathology, 28, 9871012. doi:10.1017/S0954579416000663Google Scholar
Harrington, R. A., Lee, L.-C., Crum, R. M., Zimmerman, A. W., & Hertz-Picciotto, I. (2014). Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay. Pediatrics, 133, e1241e1248. doi:10.1542/peds.2013-3406Google Scholar
Hay, D. F., Pawlby, S., Waters, C. S., Perra, O., & Sharp, D. (2010). Mothers' antenatal depression and their children's antisocial outcomes. Child Development, 81, 149165. doi:10.1111/j.1467-8624.2009.01386.xGoogle Scholar
Hendrick, V., Stowe, Z. N., Altshuler, L. L., Hwang, S., Lee, E., & Haynes, D. (2003). Placental passage of antidepressant medications. American Journal of Psychiatry, 160, 993996. doi:10.1176/appi.ajp.160.5.993Google Scholar
Hirshfeld-Becker, D. R., Micco, J., Henin, A., Bloomfield, A., Biederman, J., & Rosenbaum, J. (2008). Behavioral inhibition. Depression and Anxiety, 25, 357367. doi:10.1002/da.20490Google Scholar
Hobfoll, S. E., Ritter, C., Lavin, J., Hulsizer, M. R., & Cameron, R. P. (1995). Depression prevalence and incidence among inner-city pregnant and postpartum women. Journal of Consulting and Clinical Psychology, 63, 445453. doi:10.1037/0022-006X.63.3.445Google Scholar
Hoffman, M. C., Mazzoni, S. E., Wagner, B. D., Laudenslager, M. L., & Ross, R. G. (2016). Measures of maternal stress and mood in relation to preterm birth. Obstetrics and Gynecology, 127, 545552. doi:10.1097/AOG.0000000000001287Google Scholar
Hollon, S. D. (2016). The efficacy and acceptability of psychological interventions for depression: Where we are now and where we are going. Epidemiology and Psychiatric Sciences, 25, 295300. doi:10.1017/S2045796015000748Google Scholar
Huot, R., Brennan, P., Stowe, Z., Plotsky, P., & Walker, E. (2004). Negative affect in offspring of depressed mothers is predicted by infant cortisol levels at 6 months and maternal depression during pregnancy, but not postpartum. Annals of the New York Academy of Sciences, 1032, 234236. doi:10.1196/annals.1314.028Google Scholar
Hviid, A., Melbye, M., & Pasternak, B. (2013). Use of selective serotonin reuptake inhibitors during pregnancy and risk of autism. New England Journal of Medicine, 369, 24062415. doi:10.1056/NEJMoa1301449Google Scholar
Jarde, A., Morais, M., Kingston, D., Giallo, R., MacQueen, G., Giglia, L., … McDonald, S. D. (2016). Neonatal outcomes in women with untreated antenatal depression compared with women without depression: A systematic review and meta-analysis. Journal of the American Medical Association Psychiatry, 73, 826837. doi:10.1001/jamapsychiatry.2016.0934Google Scholar
Jha, S. C., Meltzer-Brody, S., Steiner, R. J., Cornea, E., Woolson, S., Ahn, M., … Styner, M. (2016). Antenatal depression, treatment with selective serotonin reuptake inhibitors, and neonatal brain structure: A propensity-matched cohort study. Psychiatry Research: Neuroimaging, 253, 4353. doi:10.1016/j.pscychresns.2016.05.004Google Scholar
Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10, 459466. doi:10.1038/nrn2632Google Scholar
Johnson, J. E., Price, A. B., Kao, J. C., Fernandes, K., Stout, R., Gobin, R. L., & Zlotnick, C. (2016). Interpersonal psychotherapy (IPT) for major depression following perinatal loss: A pilot randomized controlled trial. Archives of Women's Mental Health, 19, 845859. doi:10.1007/s00737-016-0625-5Google Scholar
Johnson, M. B., Kawasawa, Y. I., Mason, C. E., Krsnik, Z., Coppola, G., Bogdanovic, D., … Sestan, N. (2009). Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron, 62, 494509. doi:10.1016/j.neuron.2009.03.027Google Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development, 58, 14591473. doi:10.2307/1130685Google Scholar
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. Journal of the American Medical Association Psychiatry, 72, 603611. doi:10.1001/jamapsychiatry.2015.0071Google Scholar
Kaplan, L. A., Evans, L., & Monk, C. (2008). Effects of mothers' prenatal psychiatric status and postnatal caregiving on infant biobehavioral regulation: Can prenatal programming be modified? Early Human Development, 84, 249256. doi:10.1016/j.earlhumdev.2007.06.004Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62, 593602. doi:10.1001/archpsyc.62.6.593Google Scholar
Ko, J. Y., Farr, S. L., Dietz, P. M., & Robbins, C. L. (2012). Depression and treatment among US pregnant and nonpregnant women of reproductive age, 2005–2009. Journal of Women's Health, 21, 830836. doi:10.1089/jwh.2011.3466Google Scholar
Korhonen, M., Luoma, I., Salmelin, R., & Tamminen, T. (2012). A longitudinal study of maternal prenatal, postnatal and concurrent depressive symptoms and adolescent well-being. Journal of Affective Disorders, 136, 680692. doi:10.1016/j.jad.2011.10.007Google Scholar
Kostovic, I., Judas, M., Rados, M., & Hrabac, P. (2002). Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cerebral Cortex, 12, 536544. doi:10.1093/cercor/12.5.536Google Scholar
Kotov, R., Gamez, W., Schmidt, F., & Watson, D. (2010). Linking ‘big’ personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. Psychological Bulletin, 136, 768821. doi:10.1037/a0020327Google Scholar
Krueger, R. F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56, 921926. doi:10.1001/archpsyc.56.10.921Google Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256. doi:10.1037/a0015309Google Scholar
Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D., & Zald, D. H. (2017). A hierarchical causal taxonomy of psychopathology across the life span. Psychological Bulletin, 143, 142186. doi:10.1037/bul0000069Google Scholar
Lebel, C., Walton, M., Letourneau, N., Giesbrecht, G. F., Kaplan, B. J., & Dewey, D. (2016). Prepartum and postpartum maternal depressive symptoms are related to children's brain structure in preschool. Biological Psychiatry, 80, 859868. doi:10.1016/j.biopsych.2015.12.004Google Scholar
Leichsenring, F., & Steinert, C. (2017). Is cognitive behavioral therapy the gold standard for psychotherapy? The need for plurality in treatment and research. Journal of the American Medical Association Psychiatry, 318, 13231324. doi:10.1001/jama.2017.13737Google Scholar
Lenze, S. N., & Potts, M. A. (2017). Brief interpersonal psychotherapy for depression during pregnancy in a low-income population: A randomized controlled trial. Journal of Affective Disorders, 210, 151157. doi:10.1016/j.jad.2016.12.029Google Scholar
Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic–pituitary–adrenal axis dysregulation in depressed children and adolescents: A meta-analysis. Psychoneuroendocrinology, 34, 12721283. doi:10.1016/j.psyneuen.2009.03.016Google Scholar
Lumey, L. H., Stein, A. D., & Susser, E. (2011). Prenatal famine and adult health. Annual Review of Public Health, 32, 237262. doi:10.1146/annurev-publhealth-031210-101230Google Scholar
Lundy, B. L., Jones, N. A., Field, T., Nearing, G., Davalos, M., Pietro, P. A., … Kuhn, C. (1999). Prenatal depression effects on neonates. Infant Behavior and Development, 22, 119129. doi:10.1016/S0163-6383(99)80009-5Google Scholar
Luoma, I., Tamminen, T., Kaukonen, P., Laippala, P., Puura, K., Salmelin, R., & Almqvist, F. (2001). Longitudianl study of maternal depressive symptoms and child well-being. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 13671374. doi:10.1097/00004583-200112000-00006Google Scholar
Mäki, P., Veijola, J., Räsänen, P., Joukamaa, M., Valonen, P., Jokelainen, J., & Isohanni, M. (2003). Criminality in the offspring of antenatally depressed mothers: A 33-year follow-up of the Northern Finland 1966 Birth Cohort. Journal of Affective Disorders, 74, 273278. doi:10.1016/S0165-0327(02)00019-8Google Scholar
Man, K. K., Chan, E. W., Ip, P., Coghill, D., Simonoff, E., Chan, P. K., & Wong, I. C. (2017). Prenatal antidepressant use and risk of attention-deficit/hyperactivity disorder in offspring: Population based cohort study. British Medical Journal, 357, j2350. doi:10.1136/bmj.j2350Google Scholar
Marcus, S. M. (2009). Depression during pregnancy: Rates, risks and consequences—Motherisk Update 2008. Canadian Journal of Clinical Pharmacology, 16, 1522.Google Scholar
Marcus, S. M., Flynn, H. A., Blow, F. C., & Barry, K. L. (2003). Depressive symptoms among pregnant women screened in obstetrics settings. Journal of Women's Health, 12, 373380. doi:10.1089/154099903765448880Google Scholar
McCarthy, H., Skokauskas, N., & Frodl, T. (2014). Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: A meta-analysis. Psychological Medicine, 44, 869880. doi:10.1017/S0033291713001037Google Scholar
McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032, 17. doi:10.1196/annals.1314.001Google Scholar
Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46, 806834. doi:10.1037/0022-006X.46.4.806Google Scholar
Melville, J. L., Reed, S. D., Russo, J., Croicu, C. A., Ludman, E., LaRocco-Cockburn, A., & Katon, W. (2014). Improving care for depression in obstetrics and gynecology: A randomized controlled trial. Obstetrics and Gynecology, 123, 12371246. doi:10.1097/AOG.0000000000000231Google Scholar
Miller, C. H., Hamilton, J. P., Sacchet, M. D., & Gotlib, I. H. (2015). Meta-analysis of functional neuroimaging of major depressive disorder in touth. Journal of the American Medical Association Psychiatry, 72, 10451053. doi:10.1001/jamapsychiatry.2015.1376Google Scholar
Moffitt, T. E., Caspi, A., Dickson, N., Silva, P., & Stanton, W. (1996). Childhood-onset versus adolescent-onset antisocial conduct problems in males: Natural history from ages 3 to 18 years. Developmental Psychopathology, 8, 399424. doi:10.1017/S0954579400007161Google Scholar
Mulcahy, R., Reay, R. E., Wilkinson, R. B., & Owen, C. (2010). A randomised control trial for the effectiveness of group interpersonal psychotherapy for postnatal depression. Archives of Women's Mental Health, 13, 125139. doi:10.1007/s00737-009-0101-6Google Scholar
Mulder, E., Ververs, F., De Heus, R., & Visser, G. (2011). Selective serotonin reuptake inhibitors affect neurobehavioral development in the human fetus. Neuropsychopharmacology, 36, 19611971. doi:10.1038/npp.2011.67Google Scholar
Murray, L., Arteche, A., Fearon, P., Halligan, S., Croudace, T., & Cooper, P. (2010). The effects of maternal postnatal depression and child sex on academic performance at age 16 years: A developmental approach. Journal of Child Psychology and Psychiatry, 51, 11501159. doi:10.1111/j.1469-7610.2010.02259.xGoogle Scholar
Nathanielsz, P. W. (1999). Life in the womb: The origin of health and disease. Ithaca, NY: Promethean Press.Google Scholar
National Center for Health Statistics. (2015). Prescription drug use in the past 30 days, by sex, race and Hispanic origin, and age: United States, selected years 1988–1994 through 2009–2012. Hyattsville, MD: Author.Google Scholar
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, and Behavioral Neuroscience, 12, 241268. doi:10.3758/s13415-011-0083-5Google Scholar
Nigg, J. T. (2017). Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, 58, 361383. doi:10.1111/jcpp.12675Google Scholar
Nulman, I., Koren, G., Rovet, J., Barrera, M., Pulver, A., Streiner, D., & Feldman, B. (2012). Neurodevelopment of children following prenatal exposure to venlafaxine, selective serotonin reuptake inhibitors, or untreated maternal depression. American Journal of Psychiatry, 169, 11651174. doi:10.1176/appi.ajp.2012.11111721Google Scholar
O'Connor, E., Rossom, R. C., Henninger, M., Groom, H. C., & Burda, B. U. (2016). Primary care screening for and treatment of depression in pregnant and postpartum women: Evidence report and systematic review for the US Preventive Services Task Force. Journal of the American Medical Association, 315, 388406. doi:10.1001/jama.2015.18948Google Scholar
O'Connor, T. G., Monk, C., & Fitelson, E. M. (2014). Practitioner review: Maternal mood in pregnancy and child development—Implications for child psychology and psychiatry. Journal of Child Psychology and Psychiatry, 55, 99111. doi:10.1111/jcpp.12153Google Scholar
O'Donnell, K. J., Glover, V., Barker, E. D., & O'Connor, T. G. (2014). The persisting effect of maternal mood in pregnancy on childhood psychopathology. Developmental Psychopathology, 26, 393403. doi:10.1017/S0954579414000029Google Scholar
O'Donnell, K. J., Glover, V., Jenkins, J., Browne, D., Ben-Shlomo, Y., Golding, J., & O'Connor, T. G. (2013). Prenatal maternal mood is associated with altered diurnal cortisol in adolescence. Psychoneuroendocrinology, 38, 16301638. doi:10.1016/j.psyneuen.2013.01.008Google Scholar
O'Hara, M. W., Stuart, S., Gorman, L. L., & Wenzel, A. (2000). Efficacy of interpersonal psychotherapy for postpartum depression. Archives of General Psychiatry, 57, 10391045. doi:10.1001/archpsyc.57.11.1039Google Scholar
Olino, T. M., Dougherty, L. R., Bufferd, S. J., Carlson, G. A., & Klein, D. N. (2014). Testing models of psychopathology in preschool-aged children using a structured interview-based assessment. Journal of Abnormal Child Psychology, 42, 12011211. doi:10.1007/s10802-014-9865-xGoogle Scholar
Olivier, J. D., Åkerud, H., Kaihola, H., Pawluski, J., Skalkidou, A., Högberg, U., & Sundström-Poromaa, I. (2013). The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring. Frontiers in Cellular Neuroscience, 7, 115. doi:10.3389/fncel.2013.00073Google Scholar
Olson, S. L., Bates, J. E., Sandy, J. M., & Lanthier, R. (2000). Early developmental precursors of externalizing behavior in middle childhood and adolescence. Journal of Abnormal Child Psychology, 28, 119133. doi:10.1023/A:1005166629744Google Scholar
Ormel, J., Jeronimus, B. F., Kotov, R., Riese, H., Bos, E. H., Hankin, B., … Oldehinkel, A. J. (2013). Neuroticism and common mental disorders: Meaning and utility of a complex relationship. Clinical Psychology Review, 33, 686697. doi:10.1016/j.cpr.2013.04.003Google Scholar
Pacheco, A., & Figueiredo, B. (2012). Mother's depression at childbirth does not contribute to the effects of antenatal depression on neonate's behavioral development. Infant Behavior and Development, 35, 513522. doi:10.1016/j.infbeh.2012.02.001Google Scholar
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31, 464468. doi:10.1016/j.tins.2008.06.006Google Scholar
Pearson, R. M., Evans, J., Kounali, D., Lewis, G., Heron, J., Ramchandani, P. G., … Stein, A. (2013). Maternal depression during pregnancy and the postnatal period: Risks and possible mechanisms for offspring depression at age 18 years. Journal of the American Medical Association Psychiatry, 70, 13121319. doi:10.1001/jamapsychiatry.2013.2163Google Scholar
Peterson, B. S., Warner, V., Bansal, R., Zhu, H., Hao, X., Liu, J., … Weissman, M. M. (2009). Cortical thinning in persons at increased familial risk for major depression. Proceedings of the National Academy of Sciences, 106, 62736278. doi:10.1073/pnas.0805311106Google Scholar
Pilowsky, D. J., Wickramaratne, P., Talati, A., Tang, M., Hughes, C. W., Garber, J., … Sood, A. B. (2008). Children of depressed mothers 1 year after the initiation of maternal treatment: Findings from the STAR*D-Child Study. American Journal of Psychiatry, 165, 11361147. doi:10.1176/appi.ajp.2008.07081286Google Scholar
Plant, D. T., Barker, E. D., Waters, C. S., Pawlby, S., & Pariante, C. M. (2013). Intergenerational transmission of maltreatment and psychopathology: The role of antenatal depression. Psychological Medicine, 43, 519528. doi:10.1017/S0033291712001298Google Scholar
Plant, D. T., Pariante, C. M., Sharp, D., & Pawlby, S. (2015). Maternal depression during pregnancy and offspring depression in adulthood: Role of child maltreatment. British Journal of Psychiatry, 207, 213220. doi:10.1192/bjp.bp.114.156620Google Scholar
Posner, J., Cha, J., Roy, A., Peterson, B., Bansal, R., Gustafsson, H., … Monk, C. (2016). Alterations in amygdala–prefrontal circuits in infants exposed to prenatal maternal depression. Translational Psychiatry, 6, e935. doi:10.1038/tp.2016.146Google Scholar
Qiu, A., Anh, T. T., Li, Y., Chen, H., Rifkin-Graboi, A., Broekman, B. F., … Meaney, M. J. (2015). Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Translational Psychiatry, 5, e508. doi:10.1038/tp.2015.3Google Scholar
Renken, B., Egeland, B., Marvinney, D., Mangelsdorf, S., & Sroufe, L. A. (1989). Early childhood antecedents of aggression and passive-withdrawal in early elementary school. Journal of Personality, 57, 257281. doi:10.1111/j.1467-6494.1989.tb00483.xGoogle Scholar
Rifkin-Graboi, A., Bai, J., Chen, H., Hameed, W. B., Sim, L. W., Tint, M. T., … Qiu, A. (2013). Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biological Psychiatry, 74, 837844. doi:10.1016/j.biopsych.2013.06.019Google Scholar
Rogers, J. C., & de Brito, S. A. (2016). Cortical and subcortical gray matter volume in youths with conduct problems: A meta-analysis. Journal of the American Medical Association Psychiatry, 73, 6472. doi:10.1001/jamapsychiatry.2015.2423Google Scholar
Ross, L. E., Grigoriadis, S., Mamisashvili, L., VonderPorten, E. H., Roerecke, M., Rehm, J., … Mousmanis, P. (2013). Selected pregnancy and delivery outcomes after exposure to antidepressant medication: A systematic review and meta-analysis. Journal of the American Medical Association Psychiatry, 70, 436443. doi:10.1001/jamapsychiatry.2013.684Google Scholar
Rothbart, M. K., Ahadi, S. A., Hersey, K. L., & Fisher, P. (2001). Investigations of temperament at three to seven years: The Children's Behavior Questionnaire. Child Development, 72, 13941408. doi:10.1111/1467-8624.00355Google Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Eisenberg, N., Damon, W., & Lerner, L. M. (Eds.), Handbook of child psychology. Hoboken, NJ: Wiley.Google Scholar
Rouse, M. H., & Goodman, S. H. (2014). Perinatal depression influences on infant negative affectivity: Timing, severity, and co-morbid anxiety. Infant Behavior and Development, 37, 739751. doi:10.1016/j.infbeh.2014.09.001Google Scholar
Rutter, M., & Uher, R. (2012). Classification issues and challenges in child and adolescent psychopathology. International Review of Psychiatry, 24, 514529. doi:10.3109/09540261.2012.719862Google Scholar
Sandman, C. A., Buss, C., Head, K., & Davis, E. P. (2015). Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biological Psychiatry, 77, 324334. doi:10.1016/j.biopsych.2014.06.025Google Scholar
Sandman, C. A., Class, Q. A., Glynn, L. M., & Davis, E. P. (2016). Neurobehavioral disorders and developmental origins of health and disease. In Rosenfeld, C. (Ed.), The epigenome and developmental origins of health and disease (pp. 236267). London: Academic Press/Elsevier.Google Scholar
Scheinost, D., Sinha, R., Cross, S. N., Kwon, S. H., Sze, G., Constable, R. T., & Ment, L. R. (2017). Does prenatal stress alter the developing connectome? Pediatric Research, 81, 214226. doi:10.1038/pr.2016.197Google Scholar
Shang, J., Fu, Y., Ren, Z., Zhang, T., Du, M., Gong, Q., … Zhang, W. (2014). The common traits of the ACC and PFC in anxiety disorders in the DSM-5: Meta-analysis of voxel-based morphometry studies. PLOS ONE, 9, 110. doi:10.1371/journal.pone.0093432Google Scholar
Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62, 135. doi: 10.1016/0006-8993(73)90617-3Google Scholar
Smith, R., Mesiano, S., & McGrath, S. (2002). Hormone trajectories leading to human birth. Regulatory Peptides, 108, 159164. doi:10.1016/S0167-0115(02)00105-2Google Scholar
Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8, 383395.Google Scholar
Snyder, H. R., Hankin, B. L., Sandman, C. A., Head, K., & Davis, E. P. (2017). Distinct patterns of reduced prefrontal and limbic gray matter volume in childhood general and internalizing psychopathology. Clinical Psychological Science, 5, 10011013. doi:10.1177/2167702617714563Google Scholar
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 124. doi:10.3389/fpsyg.2015.00328Google Scholar
Snyder, H. R., Young, J. F., & Hankin, B. L. (2017). Strong homotypic continuity in common psychopathology, internalizing, and externalizing factors across 18 months in adolescents. Clinical Psychological Science, 5, 98110. doi:10.1177/2167702616651076Google Scholar
Sockol, L. E., Epperson, C. N., & Barber, J. P. (2011). A meta-analysis of treatments for perinatal depression. Clinical Psychology Review, 31, 839849. doi:10.1016/j.cpr.2011.03.009Google Scholar
Solomonov, N., & Barber, J. P. (2016). What we know, what we do not know, and where are we heading? Efficacy and acceptability of psychological interventions for depression. Epidemiology and Psychiatric Sciences, 25, 301308. doi:10.1017/S2045796015000815Google Scholar
Somhovd, M. J., Hansen, B. M., Brok, J., Esbjorn, B. H., & Greisen, G. (2012). Anxiety in adolescents born preterm or with very low birthweight: A meta-analysis of case-control studies. Developmental Medicine & Child Neurology, 54, 988994. doi:10.1111/j.1469-8749.2012.04407.xGoogle Scholar
Spinelli, M. G., & Endicott, J. (2003). Controlled clinical trial of interpersonal psychotherapy versus parenting education program for depressed pregnant women. American Journal of Psychiatry, 160, 555562. doi:10.1176/appi.ajp.160.3.555Google Scholar
Spinelli, M. G., Endicott, J., Goetz, R. R., & Segre, L. S. (2016). Reanalysis of efficacy of interpersonal psychotherapy for antepartum depression versus parenting education program: Initial severity of depression as a predictor of treatment outcome. Journal of Clinical Psychiatry, 77, 535540. doi:10.4088/JCP.15m09787Google Scholar
Stout, S. A., Espel, E. V., Sandman, C. A., Glynn, L. M., & Davis, E. P. (2015). Fetal programming of children's obesity risk. Psychoneuroendocrinology, 53, 2939. doi:10.1016/j.psyneuen.2014.12.009Google Scholar
Sujan, A. C., Rickert, M. E., Öberg, A. S., Quinn, P. D., Hernández-Díaz, S., Almqvist, C., … D'Onofrio, B. M. (2017). Associations of maternal antidepressant use during the first trimester of pregnancy with preterm birth, small for gestational age, autism spectrum disorder, and attention-deficit/hyperactivity disorder in offspring. Journal of the American Medical Association, 317, 15531562. doi:10.1001/jama.2017.3413Google Scholar
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience and Biobehavioral Reviews, 30, 376389. doi:10.1016/j.neubiorev.2005.08.002Google Scholar
Swartz, H. A., Frank, E., Zuckoff, A., Cyranowski, J. M., Houck, P. R., Cheng, Y., … Shear, M. K. (2008). Brief interpersonal psychotherapy for depressed mothers whose children are receiving psychiatric treatment. American Journal of Psychiatry, 165, 11551162. doi:10.1176/appi.ajp.2008.07081339Google Scholar
Swartz, J. R., Williamson, D. E., & Hariri, A. R. (2015). Developmental change in amygdala reactivity during adolescence: Effects of family history of depression and stressful life events. American Journal of Psychiatry, 172, 276283. doi:10.1176/appi.ajp.2014.14020195Google Scholar
Tackett, J. L., Lahey, B. B., van Hulle, C., Waldman, I., Krueger, R. F., & Rathouz, P. J. H. (2013). Common genetic influences on negative emotionality and a general psychopathology factor in childhood and adolescence. Journal of Abnormal Psychology, 122, 11421153. doi:10.1037/a0034151Google Scholar
Thomason, M. E., Grove, L. E., Lozon, T. A., Vila, A. M., Ye, Y., Nye, M. J., … Yeo, L. (2015). Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Developmental Cognitive Neuroscience, 11, 96104. doi:10.1016/j.dcn.2014.09.001Google Scholar
Thomason, M. E., Scheinost, D., Manning, J. H., Grove, L. E., Hect, J., Marshall, N., … Yeo, L. (2017). Weak functional connectivity in the human fetal brain prior to preterm birth. Scientific Reports, 7, 39286. doi:10.1038/srep39286Google Scholar
Tollenaar, M. S., Beijers, R., Jansen, J., Riksen-Walraven, J. M., & de Weerth, C. (2011). Maternal prenatal stress and cortisol reactivity to stressors in human infants. Stress, 14, 5365. doi:10.3109/10253890.2010.499485Google Scholar
Van Batenburg-Eddes, T., Brion, M. J., Henrichs, J., Jaddoe, V. W. V., Hofman, A., Verhulst, F. C., … Tiemeier, H. (2013). Parental depressive and anxiety symptoms during pregnancy and attention problems in children: A cross-cohort consistency study. Journal of Child Psychology and Psychiatry, 54, 591600. doi:10.1111/jcpp.12023Google Scholar
van den Bergh, B. R., & Marcoen, A. (2004). High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Development, 75, 10851097. doi:10.1111/j.1467-8624.2004.00727.xGoogle Scholar
van den Bergh, B. R., Mennes, M., Oosterlaan, J., Stevens, V., Stiers, P., Marcoen, A., & Lagae, L. (2005). High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neuroscience and Biobehavioral Reviews, 29, 259269. doi:10.1016/j.neubiorev.2004.10.010Google Scholar
van den Bergh, B. R., van Calster, B., Pinna Puissant, S., & van Huffel, S. (2008). Self-reported symptoms of depressed mood, trait anxiety and aggressive behavior in post-pubertal adolescents: Associations with diurnal cortisol profiles. Hormone Behavior, 54, 253257. doi:10.1016/j.yhbeh.2008.03.015Google Scholar
van den Bergh, B. R., van Calster, B., Smits, T., van Huffel, S., & Lagae, L. (2008). Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology, 33, 536545. doi:10.1038/sj.npp.1301450Google Scholar
van der Knaap, N. J. F., Klumpers, F., El Marroun, H., Mous, S., Schubert, D., Jaddoe, V., … White, T. (2017). Maternal depressive symptoms during pregnancy are associated with amygdala hyperresponsivity in children. European Child and Adolescent Psychiatry, 27, 18.Google Scholar
Vänskä, M., Punamäki, R., Lindblom, J., Tolvanen, A., Flykt, M., Unkila-Kallio, L., … Tiitinen, A. (2016). Timing of early maternal mental health and child cortisol regulation. Infant and Child Development, 25, 461483. doi:10.1002/icd.1948Google Scholar
Venkatesh, K. K., Riley, L., Castro, V. M., Perlis, R. H., & Kaimal, A. J. (2016). Association of antenatal depression symptoms and antidepressant treatment with preterm birth. Obstetrics & Gynecology, 127, 926933. doi:10.1097/aog.0000000000001397Google Scholar
Viktorin, A., Lichtenstein, P., Lundholm, C., Almqvist, C., D'Onofrio, B. M., Larsson, H., … Magnusson, P. K. E. (2016). Selective serotonin re-uptake inhibitor use during pregnancy: Association with offspring birth size and gestational age. International Journal of Epidemiology, 45, 170177. doi:10.1093/ije/dyv351Google Scholar
Volpe, J. J. (2008). Neurology of the newborn (5th ed.). Philedelphia: Elsevier.Google Scholar
Vrshek-Schallhorn, S., Doane, L. D., Mineka, S., Zinbarg, R. E., Craske, M. G., & Adam, E. K. (2013). The cortisol awakening response predicts major depression: Predictive stability over a 4-year follow-up and effect of depression history. Psychological Medicine, 43, 483493. doi:10.1017/S0033291712001213Google Scholar
Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proceedings of the National Academy of Sciences, 109(Suppl. 2), 1722117227. doi:10.1073/pnas.1121263109Google Scholar
Weissman, M. M., Pilowsky, D. J., Wickramaratne, P. J., Talati, A., Wisniewski, S. R., Fava, M., … King, C. A. (2006). Remissions in maternal depression and child psychopathology: A STAR*D-child report. Journal of the American Medical Association, 295, 13891398. doi:10.1001/jama.295.12.1389Google Scholar
Werner, E. A., Myers, M. M., Fifer, W. P., Cheng, B., Fang, Y., Allen, R., & Monk, C. (2007). Prenatal predictors of infant temperament. Developmental Psychobiology, 49, 474484. doi:10.1002/dev.20232Google Scholar
Westdahl, C., Milan, S., Magriples, U., Kershaw, T. S., Rising, S. S., & Ickovics, J. R. (2007). Social support and social conflict as predictors of prenatal depression. Obstetrics and Gynecology, 110, 134140. doi:10.1097/01.AOG.0000265352.61822.1bGoogle Scholar
White, R. H., Bates, M. E., & Buyske, S. (2001). Adolescence-limited versus persistent delinquency: Extending Moffitt's hypothesis into adulthood. Journal of Abnormal Psychology, 110, 600609. doi:10.1037/0021-843X.110.4.600Google Scholar
Wickramaratne, P., Gameroff, M. J., Pilowsky, D. J., Hughes, C. W., Garber, J., Malloy, E., … Alpert, J. E. (2011). Children of depressed mothers 1 year after remission of maternal depression: Findings from the STAR*D-Child study. American Journal of Psychiatry, 168, 593602. doi:10.1176/appi.ajp.2010.10010032Google Scholar
Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Perico, C. A. M. (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Molecular Psychiatry, 22, 14551463. doi:10.1038/mp.2016.72Google Scholar
Yehuda, R. (2002). Current status of cortisol findings in post-traumatic stress disorder. Psychiatric Clinics of North America, 25, 341368. doi:10.1016/S0193-953X(02)00002-3Google Scholar
Zald, D. H., & Lahey, B. B. (2017). Implications of the hierarchical structure of psychopathology for psychiatric neuroimaging. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 310317. doi:10.1016/j.bpsc.2017.02.003Google Scholar
Zlotnick, C., Miller, I. W., Pearlstein, T., Howard, M., & Sweeney, P. (2006). A preventive intervention for pregnant women on public assistance at risk for postpartum depression. American Journal of Psychiatry, 163, 14431445. doi:10.1176/ajp.2006.163.8.1443Google Scholar
Zlotnick, C., Tzilos, G., Miller, I., Seifer, R., & Stout, R. (2016). Randomized controlled trial to prevent postpartum depression in mothers on public assistance. Journal of Affective Disorders, 189, 263268. doi:10.1016/j.jad.2015.09.059Google Scholar