Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T04:04:04.053Z Has data issue: false hasContentIssue false

Affording autism an early brain development re-definition

Published online by Cambridge University Press:  17 September 2020

Ami Klin*
Affiliation:
Marcus Autism Center, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA Children's Healthcare of Atlanta, Atlanta, GA, USA Emory Center for Translational Social Neuroscience, Atlanta, GA, USA
Megan Micheletti
Affiliation:
Department of Psychology, University of Texas at Austin, Austin, TX, USA
Cheryl Klaiman
Affiliation:
Marcus Autism Center, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA Children's Healthcare of Atlanta, Atlanta, GA, USA
Sarah Shultz
Affiliation:
Marcus Autism Center, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA Children's Healthcare of Atlanta, Atlanta, GA, USA
John N. Constantino
Affiliation:
Departments of Psychiatry and Pediatrics, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St Louis, MO, USA
Warren Jones
Affiliation:
Marcus Autism Center, Atlanta, GA, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA Children's Healthcare of Atlanta, Atlanta, GA, USA Emory Center for Translational Social Neuroscience, Atlanta, GA, USA
*
Author for Correspondence: Ami Klin, PhD, Marcus Autism Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1920 Briarcliff Rd NE, Atlanta, GA30329; E-mail: [email protected].

Abstract

The national priority to advance early detection and intervention for children with autism spectrum disorder (ASD) has not reduced the late age of ASD diagnosis in the US over several consecutive Centers for Disease Control and Prevention (CDC) surveillance cohorts, with traditionally under-served populations accessing diagnosis later still. In this review, we explore a potential perceptual barrier to this enterprise which views ASD in terms that are contradicted by current science, and which may have its origins in the current definition of the condition and in its historical associations. To address this perceptual barrier, we propose a re-definition of ASD in early brain development terms, with a view to revisit the world of opportunities afforded by current science to optimize children's outcomes despite the risks that they are born with. This view is presented here to counter outdated notions that potentially devastating disability is determined the moment a child is born, and that these burdens are inevitable, with opportunities for improvement being constrained to only alleviation of symptoms or limited improvements in adaptive skills. The impetus for this piece is the concern that such views of complex neurodevelopmental conditions, such as ASD, can become self-fulfilling science and policy, in ways that are diametrically opposed to what we currently know, and are learning every day, of how genetic risk becomes, or not, instantiated as lifetime disabilities.

Type
Special Section Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R., & Tapia, C. (2013). Early intervention, IDEA Part C services, and the medical home: Collaboration with best practice and best outcome. Pediatrics, 132, e1073e1086. doi:10.1542/peds.2013-2305CrossRefGoogle Scholar
Adolphs, R., Gosselin, F., Buchanan, T. W., Tranel, D., Schyns, P., & Damasio, A. R. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 6872. doi:10.1038/nature03086CrossRefGoogle ScholarPubMed
Al-Qabandi, M., Gorter, J. W., & Rosenbaum, P. (2011). Early autism detection: Are we ready for routine screening? Pediatrics, 128, e211e217. doi:10.1542/peds.2010-1881CrossRefGoogle ScholarPubMed
Alley, D. E., Asomugha, C. N., Conway, P. H., & Sanghavi, D. M. (2016). Accountable health communities – addressing social needs through medicare and medicaid. New England Journal of Medicine, 374, 811. doi:10.1056/NEJMp1512532CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association.Google Scholar
Anderson, G. M. (2015). Autism biomarkers: Challenges, pitfalls and possibilities. Journal of Autism & Developmental Disorders, 45, 11031113. doi:10.1007/s10803-014-2225-4CrossRefGoogle ScholarPubMed
Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., … Dowling, N. F. (2018). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR. Surveillance Summaries, 67, 123. doi:10.15585/mmwr.ss6706a1CrossRefGoogle Scholar
Bates, E., Benigni, L., Camaioni, L., Bretherton, I., & Volterra, V. (1979). The emergence of symbols: Cognition and communication in infancy. New York: Academic Press.Google Scholar
Beauchaine, T. P., & Cicchetti, D. (2019). Emotion dysregulation and emerging psychopathology: A transdiagnostic, transdisciplinary perspective. Development and Psychopathology, 31, 799804. doi:10.1017/S0954579419000671CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Constantino, J. N., & Hayden, E. P. (2018). Psychiatry and developmental psychopathology: Unifying themes and future directions. Comprehensive Psychiatry, 87, 143152. doi:10.1016/j.comppsych.2018.10.014CrossRefGoogle ScholarPubMed
Berman, M. G., Stier, A. J., & Akcelik, G. N. (2019). Environmental neuroscience. American Psychologist, 74, 10391052. doi:10.1037/amp0000583CrossRefGoogle ScholarPubMed
Betancur, C. (2011). Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Research, 1380, 4277. doi:10.1016/j.brainres.2010.11.078CrossRefGoogle ScholarPubMed
Boat, T. F., Wu, J. T. (Eds.), Committee to Evaluate the Supplemental Security Income disability Program for Children with Mental Disorders, Board of the Health of Select Populations, Board on Children, Youth, and Families, Institute of Medicine, … The National Academies of Sciences, Engineering, and Medicine. In Mental disorders and disabilities among low-income children. Washington, DC: National Academies Press. https://doi.org/10.17226/21780Google Scholar
Bornstein, M. H., Hahn, C.-S., Putnick, D., & Pearson, R. M. (2018). Stability of core language skill from infancy to adolescence in typical and atypical development. Science Advances, 4, eaat7422. eCollection 2018 Nov. doi:10.1126/sciadv.aat7422CrossRefGoogle ScholarPubMed
Bornstein, M. H., Jager, J., & Putnick, D. L. (2013). Sampling in developmental science: Situations, shortcomings, solutions, and standards. Developmental Review, 33, 357370. doi:10.1016/j.dr.2013.08.003CrossRefGoogle ScholarPubMed
Buescher, A. V. S., Cidav, Z., Knapp, M., & Mandell, D. S. (2014). Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatrics, 168, 721728. doi:10.1001/jamapediatrics.2014.210CrossRefGoogle ScholarPubMed
Butler, T. (2014). Plague history: Yersin's discovery of the causative bacterium in 1894 enabled, in the subsequent century, scientific progress in understanding the disease and the development of treatments and vaccines. Clinical Microbiology and Infection, 20, 202209. doi:10.1111/1469-0691.12540CrossRefGoogle ScholarPubMed
Castelbaum, L., Sylvester, C. M., Zhang, Y., Yu, Q., & Constantino, J. N. (2019). On the nature of monozygotic twin concordance and discordance for autistic trait severity: A quantitative analysis. Behavior Genetics. Advance online publication. doi:10.1007/s10519-019-09987-2Google ScholarPubMed
Chaste, P., Klei, L., Sanders, S. J., Hus, V., Murtha, M. T., Lowe, J. K., … Devlin, B. (2015). A genome-wide association study of autism using the Simons simplex collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biological Psychiatry, 77, 775784. doi:10.1016/j.biopsych.2014.09.017CrossRefGoogle ScholarPubMed
Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biological Psychiatry, 74, 195203. doi:10.1016/j.biopsych.2012.11.022CrossRefGoogle ScholarPubMed
Christensen, D. L., Bilder, D. A., Zahorodny, W., Pettygrove, S., Durkin, M. S., Fitzgerald, R. T., … Yeargin-Allsopp, M. (2016). Prevalence and characteristics of autism spectrum disorder among 4-year-old children in the autism and developmental disabilities monitoring network. Journal of Developmental & Behavioral Pediatrics, 37, 18. doi:10.1097/DBP.0000000000000235CrossRefGoogle ScholarPubMed
Cicchetti, D. (2013). Annual research review: Resilient functioning in maltreated children - Past, present, and future perspectives. Journal of Child Psychology and Psychiatry and Allied Disciplines, 54, 402422. doi:10.1111/j.1469-7610.2012.02608.xCrossRefGoogle ScholarPubMed
Cicchetti, D., & Cohen, D. J. (1995). Perspectives on developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Theory method (Vol. 1, pp. 320). New York: Wiley.Google Scholar
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology & Psychiatry, 50, 1625. doi:10.1111/j.1469-7610.2008.01979.xCrossRefGoogle ScholarPubMed
Constantino, J. N. (2011). The quantitative nature of autistic social impairment. Pediatric Research, 69, 55R62R. doi:10.1203/PDR.0b013e318212ec6eCrossRefGoogle ScholarPubMed
Constantino, J. N., Abbacchi, A., Saulnier, C., Klaiman, C., Mandell, D., Zhang, Y., … Geschwind, D. (in press). Timing of the diagnosis of autism in African American children. Pediatrics.Google Scholar
Constantino, J. N., Kennon-McGill, S., Weichselbaum, C., Marrus, N., Haider, A., Glowinski, A., … Jones, W. (2017). Infant viewing of social scenes is under genetic control and is atypical in autism. Nature, 547, 340344. doi:10.1038/nature22999CrossRefGoogle ScholarPubMed
Constantino, J. N., Todorov, A., Hilton, C., Law, P., Zhang, Y., Molloy, E., … Geschwind, D. (2013). Autism recurrence in half siblings: Strong support for genetic mechanisms of transmission in ASD. Molecular Psychiatry, 18, 137138. doi:10.1038/mp.2012.9CrossRefGoogle ScholarPubMed
Constantino, J. N., Zhang, Y., Frazier, T., Abbacchi, A. M., & Law, P. (2010). Sibling recurrence and the genetic epidemiology of autism. The American Journal of Psychiatry, 167, 1349–56. doi:10.1176/appi.ajp.2010.09101470CrossRefGoogle ScholarPubMed
Crespi, B. J., & Procyshyn, T. L. (2017). Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Neuroscience & Biobehavioral Reviews, 79, 1426. doi:10.1016/j.neubiorev.2017.05.004CrossRefGoogle Scholar
Daniels, A. M., Halladay, A. K., Shih, A., Elder, L. M., & Dawson, G. (2014). Approaches to enhancing the early detection of autism spectrum disorders: A systematic review of the literature. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 141152. doi:10.1016/j.jaac.2013.11.002CrossRefGoogle ScholarPubMed
Daniels, A. M., & Mandell, D. S. (2014). Explaining differences in age at autism spectrum disorder diagnosis: A critical review. Autism, 18, 583597. doi:10.1177/1362361313480277CrossRefGoogle ScholarPubMed
Dawson, G. (2016). Why it's important to continue universal autism screening while research fully examines its impact. JAMA Pediatrics, 170, 527528. doi:10.1001/jamapediatrics.2016.0163CrossRefGoogle ScholarPubMed
Dawson, G., & Bernier, R. (2013). A quarter century of progress on the early detection and treatment of autism spectrum disorder. Development and Psychopathology, 25, 14551472. doi:10.1017/S0954579413000710CrossRefGoogle ScholarPubMed
Dawson, G., Jones, E. J. H., Merkle, K., Venema, K., Lowy, R., Faja, S., … Webb, S. J. (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 11501159. doi:10.1016/j.jaac.2012.08.018CrossRefGoogle ScholarPubMed
Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J., … Varley, J. (2010). Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model. Pediatrics, 125, e17e23. doi:10.1542/peds.2009-0958CrossRefGoogle ScholarPubMed
Dragoo, K. E. (2019). The Individuals with Disabilities Education Act (IDEA) Funding: A primer. Congressional Research Service Report R44624, Version 4. Updated. https://eric.ed.gov/?id=ED593614Google Scholar
Dunbar, C. E., High, K. A., Joung, J. K., Kohn, D. B., Ozawa, K., & Sadelain, M. (2018). Gene therapy comes of age. Science, 359, eaan4672. doi:10.1126/science.aan4672CrossRefGoogle ScholarPubMed
Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J., Buitelaar, J. K., Ramos-Quiroga, J. A., … Franke, B. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disorder Primers, 1, 15020. doi:10.1038/nrdp.2015.20CrossRefGoogle ScholarPubMed
Farroni, T., Johnson, M. H., & Csibra, G. (2004). Mechanisms of eye gaze perception during infancy. Journal of Cognitive Neuroscience, 16, 13201326. doi:10.1162/0898929042304787CrossRefGoogle ScholarPubMed
Feldman, R. (2007). Parent-infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. Journal of Child Psychology & Psychiatry, 48, 329354. doi:10.1111/j.1469-7610.2006.01701.xCrossRefGoogle ScholarPubMed
Feldman, R. (2017). The neurobiology of human attachments. Trends in Cognitive Sciences, 21, 8099. doi:10.1016/j.tics.2016.11.007CrossRefGoogle ScholarPubMed
Ferjan Ramírez, N., Lytle, S. R., & Kuhl, P. K. (2020). Parent coaching increases conversational turns and advances infant language development. Proceedings of the National Academy of Sciences, 117, 34843491. doi:10.1073/pnas.1921653117CrossRefGoogle ScholarPubMed
Folstein, S, & Rutter, M. (1977). Genetic influences and infantile autism. Nature, 265, 726728.CrossRefGoogle ScholarPubMed
Fountain, C., King, M. D., & Bearman, P. S. (2011). Age of diagnosis for autism: Individual and community factors across 10 birth cohorts. Journal of Epidemiology and Community Health, 65, 503510. doi:10.1136/jech.2009.104588CrossRefGoogle ScholarPubMed
Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81, 2840. doi:10.1111/j.1467-8624.2009.01380.xCrossRefGoogle ScholarPubMed
Geschwind, D. H. (2011). Genetics of autism spectrum disorders. Trends in Cognitive Sciences, 15, 409416. doi:10.1016/j.tics.2011.07.003CrossRefGoogle ScholarPubMed
Geschwind, D. H., & State, M. W. (2015). Gene hunting in autism spectrum disorder: On the path to precision medicine. The Lancet Neurology, 14, 11091120. doi:10.1016/S1474-4422(15)00044-7CrossRefGoogle ScholarPubMed
Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S. K., Knickmeyer, R. C., … Gerig, G. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27, 12551260. doi:10.1523/JNEUROSCI.3339-06.2007CrossRefGoogle ScholarPubMed
Greene, M., & Patra, K. (2016). Part C early intervention utilization in preterm infants: Opportunity for referral from a NICU follow-up clinic. Research in Developmental Disabilities, 53–54, 287295. doi:10.1016/j.ridd.2016.02.016CrossRefGoogle Scholar
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539559. doi:10.2307/1130197CrossRefGoogle ScholarPubMed
Grinker, R. (2007). Unstrange minds: Remapping the world of autism. New York: Basic Books.Google Scholar
Guthrie, W., Wallis, K., Bennett, A., Brooks, E., Dudley, J., Gerdes, M., … Miller, J. S. (2019). Accuracy of autism screening in a large pediatric network. Pediatrics, 144, e20183963. doi:10.1542/peds.2018-3963CrossRefGoogle Scholar
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … Gu, C. H. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542, 348351. doi:10.1038/nature21369CrossRefGoogle ScholarPubMed
Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T. M., … Glenthøj, B. (2018). Heritability of schizophrenia and schizophrenia spectrum based on the National-wide Danish Twin Register. Biological Psychiatry, 83, 492498. doi:10.1016/j.biopsych.2017.08.017CrossRefGoogle Scholar
Hinojosa-Rodríguez, M., Harmony, T., Carrillo-Prado, C., Van Horn, J. D., Irimia, A., Torgerson, C., & Jacokes, Z. (2017). Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. NeuroImage: Clinical, 16, 355368. doi:10.1016/j.nicl.2017.08.015CrossRefGoogle ScholarPubMed
Hömke, P., Holler, J., & Levinson, C. (2018). Eye blinks are perceived as communicative signals in human face-to-face interaction. PLoS One, 13, e0208030. doi: 10.1371/journal.pone.0208030CrossRefGoogle ScholarPubMed
Homsy, J., Zaidi, S., Shen, Y., Ware, J. S., Samocha, K. E., Karczewski, K. J., … Chung, W. K. (2015). De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 350, 12621266. doi:10.1126/science.aac9396CrossRefGoogle ScholarPubMed
Honigfeld, L., Chandhok, L., & Spiegelman, K. (2012). Engaging pediatricians in developmental screening: The effectiveness of academic detailing. Journal of Autism and Developmental Disorders, 42, 11751182. doi:10.1007/s10803-011-1344-4CrossRefGoogle ScholarPubMed
Hughes, N., Chitsabesan, P., Bryan, K., Borschmann, R., Swain, N., Lennox, C., & Shaw, J. (2017). Language impairment and comorbid vulnerabilities among young people in custody. Journal of Child Psychology & Psychiatry, 58, 11061113. doi:10.1111/jcpp.12791CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Research, 163, 195205. doi:10.1016/0006-8993(79)90349-4Google ScholarPubMed
Hyman, S. L., Levy, S. E., & Myers, S. M. (2020). Executive summary: Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics, 145, e20193448. doi:10.1542/peds.2019-3448CrossRefGoogle ScholarPubMed
Ingersoll, B., & Wainer, A. (2013). Initial efficacy of project ImPACT: A parent-mediated social communication intervention for young children with ASD. Journal of Autism and Developmental Disorders, 43, 29432952. doi:10.1007/s10803-013-1840-9CrossRefGoogle ScholarPubMed
Insel, T. R. (2010). The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65, 768779. doi:10.1016/j.neuron.2010.03.005CrossRefGoogle ScholarPubMed
Jaffe, J., Beebe, B., Feldstein, S., Crown, C. L., & Jasnow, M. D. (2001). Rhythms of dialogue in infancy: Coordinated timing in development. Monographs of the Sosciety for Research in Child Development, 66, iviii, 1–132.Google ScholarPubMed
Jensen, A. R. (1997). The puzzle of nongenetic variance. In Sternberg, R. J. & Grigorenko, E. L. (Eds.), Intelligence, heredity, and environment (pp. 4288). Cambridge, UK: Cambridge University Press.Google Scholar
Johnson, M. H. (1999). Cortical plasticity in normal and abnormal cognitive development: Evidence and working hypotheses. Development and Psychopathology, 11, 419437. doi:10.1017/S0954579499002138CrossRefGoogle ScholarPubMed
Johnson, M. H. (2006). Biological motion: A perceptual life detector? Current Biology, 16, R376R377. doi:10.1016/j.cub.2006.04.008CrossRefGoogle ScholarPubMed
Johnson, M. H., Griffin, R., Csibra, G., Halit, H., Farroni, T., de Haan, M., … Richards, J. (2005). The emergence of the social brain network: Evidence from typical and atypical development. Development and Psychopathology, 17, 599619. doi:10.1017/S0954579405050297CrossRefGoogle ScholarPubMed
Johnson, M. H., & Karmiloff-Smith, A. (2004). Neuroscience perspectives on infant development. In Bremner, G. & Slater, A. (Eds.), Theories of infant development (pp. 121141). Malden: Blackwell.CrossRefGoogle Scholar
Johnson, C. P., Myers, S. M., & American Academy of Pediatrics Council on Children With Disabilities. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120, 11831215. doi:10.1542/peds.2007-2361CrossRefGoogle ScholarPubMed
Johnson, SB, Riis, JL, & Noble, KG. (2016). State of the art review: Poverty and the developing brain. Pediatrics, 137(4). doi: 10.1542/peds.2015-3075CrossRefGoogle ScholarPubMed
Jones, W., & Klin, A. (2009). Heterogeneity and homogeneity across the autism spectrum: The role of development. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 471473. doi:10.1097/CHI.0b013e31819f6c0dCrossRefGoogle ScholarPubMed
Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature, 504, 427431. doi:10.1038/nature12715CrossRefGoogle ScholarPubMed
Joseph, R. M., Korzeniewski, S. J., Allred, E. N., O'Shea, T. M., Heeren, T., Frazier, J. A., … Vogt, K. (2017a). Extremely low gestational age and very low birthweight for gestational age are risk factors for autism spectrum disorder in a large cohort study of 10-year-old children born at 23-27 weeks’ gestation. American Journal of Obstetrics and Gynecology, 216, 304.e1304.e16. doi:10.1016/j.ajog.2016.11.1009CrossRefGoogle Scholar
Joseph, R. M., O'Shea, T. M., Allred, E. N., Heeren, T., Hirtz, D., Paneth, N., … Kuban, K. C. K. (2017b). Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years. Autism Research, 10, 224232. doi:10.1002/aur.1644CrossRefGoogle Scholar
Kaiser, A. P., & Roberts, M. Y. (2013). Parent-implemented enhanced milieu teaching with preschool children with intellectual disabilities. Journal of Speech-Language and Hearing Research, 56, 295309. doi:10.1044/1092-4388(2012/11-0231)CrossRefGoogle Scholar
Kampe, K. K., Frith, C. D., Dolan, R. J., & Frith, U. (2001). Reward value of attractiveness and gaze. Nature, 413, 589. doi:10.1038/35098149CrossRefGoogle ScholarPubMed
Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., … Šestan, N. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478, 483489. doi:10.1038/nature10523CrossRefGoogle ScholarPubMed
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389398. doi:10.1016/S1364-6613(98)01230-3CrossRefGoogle ScholarPubMed
Kasari, C. (2019). Time to rethink pre-emptive interventions for infants with early signs of autism spectrum disorder. Lancet Child & Adolescent Health, 3, 12. doi:10.1016/S2352-4642(19)30234-2CrossRefGoogle ScholarPubMed
Kim, S. H., & Lord, C. (2012). Combining information from multiple sources for the diagnosis of autism spectrum disorders for toddlers and young preschoolers from 12 to 47 months of age. Journal of Child Psychology and Psychiatry and Allied Disciplines, 53, 143151. doi:10.1111/j.1469-7610.2011.02458.xCrossRefGoogle Scholar
Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y., & Feldman, R. (2017). Brain-to-brain synchrony during naturalistic social interactions. Scientific Reports, 7, 17060. doi:10.1038/s41598-017-17339-5CrossRefGoogle ScholarPubMed
Klin, A. (1989). Understanding early infantile autism: An application of G.H. Mead's theory of the emergence of mind. London School of Economics Quarterly, 4, 336356.Google Scholar
Klin, A., Chawarska, K., Paul, R., Rubin, E., Morgan, T., Wiesner, L., & Volkmar, F. (2004). Autism in a 15-month-old child. American Journal of Psychiatry, 161, 19811988. doi:10.1176/appi.ajp.161.11.1981CrossRefGoogle Scholar
Klin, A., & Jones, W. (2018). An agenda for 21st century neurodevelopmental medicine: Lessons from autism. Revista de Neurologia, 66, S3S15. doi:10.33588/rn.66S01.2018039CrossRefGoogle ScholarPubMed
Klin, A., Jones, W., Schultz, R., & Volkmar, F. (2003). The enactive mind, or from actions to cognition: Lessons from autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 345360. doi:10.1098/rstb.2002.1202CrossRefGoogle ScholarPubMed
Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459, 257261. doi:10.1038/nature07868CrossRefGoogle ScholarPubMed
Klin, A., Shultz, S., & Jones, W. (2015). Social visual engagement in infants and toddlers with autism: Early developmental transitions and a model of pathogenesis. Neuroscience and Biobehavioral Reviews, 50, 189203. doi:10.1016/j.neubiorev.2014.10.006CrossRefGoogle Scholar
Korver, A. M., Smith, R. J., Van Camp, G., Schleiss, M. R., Bitner-Glindzicz, M. A., Lustig, L. R., … Goudewyns, A. N. (2017). Congenital hearing loss. Nature Reviews Disease Primers, 3, 16094. doi: 10.1038/nrdp.2016.94CrossRefGoogle ScholarPubMed
Kraszewski, J. N., Kay, D. M., Stevens, C. F., Koval, C., Haser, B., Ortiz, V., … Chung, W. K. (2018). Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genetics in Medicine, 20, 608613. doi:10.1038/gim.2017.152CrossRefGoogle ScholarPubMed
LeDoux, J. (2003). Synaptic Self: How our brains become who we are. New York: Penguin.Google Scholar
Lewis, K. (2013). Platforms for antibiotic discovery. Nature Reviews Drug Discovery, 12, 371387. doi:10.1038/nrd3975CrossRefGoogle ScholarPubMed
Licht, D. J., Shera, D. M., Clancy, R. R., Wernovsky, G., Montenegro, L. M., Nicolson, S. C., … Vossough, A. (2009). Brain maturation is delayed in infants with complex congenital heart defects. Journal of Thoracic and Cardiovascular Surgery, 137, 529537. doi:10.1016/j.jtcvs.2008.10.025CrossRefGoogle ScholarPubMed
Lord, C., & Jones, R. M. (2012). Annual research review: Re-thinking the classification of autism spectrum disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 53, 490509. doi:10.1111/j.1469-7610.2012.02547.xCrossRefGoogle ScholarPubMed
Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., … Risi, S. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69, 306313. doi:10.1001/archgenpsychiatry.2011.148CrossRefGoogle ScholarPubMed
Lyst, M. J., & Bird, A. (2015). Rett syndrome: A complex disorder with simple roots. Nature Reviews Genetics, 16, 261275. doi:10.1038/nrg3897CrossRefGoogle ScholarPubMed
Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., & Dietz, P. M. (2020). Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR. Surveillance Summaries, 69, 112. doi:10.15585/mmwr.ss6904a1CrossRefGoogle ScholarPubMed
Mandell, D. S., Wiggins, L. D., Carpenter, L. A., Daniels, J., DiGuiseppi, C., Durkin, M. S., … Kirby, R. S. (2009). Racial/ethnic disparities in the identification of children with autism spectrum disorders. American Journal of Public Health, 99, 493498. doi:10.2105/AJPH.2007.131243CrossRefGoogle ScholarPubMed
Marino, B. S., Lipkin, P. H., Newburger, J. W., Peacock, G., Gerdes, M., Gaynor, J. W., … American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council. (2012). Neurodevelopmental outcomes in children with congenital heart disease: Evaluation and management: A scientific statement from the American Heart Association. Circulation, 126, 11431172. doi:10.1161/CIR.0b013e318265ee8aCrossRefGoogle ScholarPubMed
McCary, L. M., & Roberts, J. E. (2013). Early identification of autism in fragile X syndrome: A review. Journal of Intellectual Disability Research, 57, 803814. doi:10.1111/j.1365-2788.2012.01609.xCrossRefGoogle ScholarPubMed
McDonald, N. M., Senturk, D., Scheffler, A., Brian, J. A., Carver, L. J., Charman, T., … Jeste, S. S. (2019). Developmental trajectories of infants with multiplex family risk for autism: A baby siblings research consortium study. JAMA Neurology, 77, 7381. doi.org/10.1001/jamaneurol.2019.3341.CrossRefGoogle Scholar
McGinnis, J. M., Williams-Russo, P., & Knickman, J. R. (2002). The case for more active policy attention to health promotion. Health Affairs, 21, 78093. doi:10.1377/hlthaff.21.2.78CrossRefGoogle ScholarPubMed
McManus, B. M., Carle, A. C., & Poehlmann, J. (2012). Effectiveness of Part C early intervention physical, occupational, and speech therapy services for preterm or low birth weight Infants in Wisconsin, United States. Academic Pediatrics, 12, 96103. doi:10.1016/j.acap.2011.11.004CrossRefGoogle ScholarPubMed
Micheletti, M., McCracken, C., Constantino, J. N., Mandell, D., Jones, W., & Klin, A. (2020). Research Review: Outcomes of 24- to 36-month-old children with autism spectrum disorder vary by ascertainment strategy: A systematic review and meta-analysis. Journal of Child Psychology and Psychiatry, 61, 417. doi:10.1111/jcpp.13057CrossRefGoogle ScholarPubMed
Molenaar, P. C. M., Boomsma, D. I., & Dolan, C. V. (1993). A third source of developmental differences. Behavior Genetics, 23, 519524. doi:10.1007/BF01068142CrossRefGoogle ScholarPubMed
Moncrieff, D., miller, E., & HIll, E. (2018). Screening tests reveal high risk among adjudicated adolescents of auditory processing and language disorders. Journal of Speech, Language, and Hearing Research, 61, 924935. doi:10.1044/2017_JSLHR-H-17-0098CrossRefGoogle ScholarPubMed
Moriuchi, J. M., Klin, A., & Jones, W. (2017). Mechanisms of diminished attention to eyes in autism. American Journal of Psychiatry, 174, 2635. doi:10.1176/appi.ajp.2016.15091222CrossRefGoogle ScholarPubMed
Mussatto, K. A., Hollenbeck-Pringle, D., Trachtenberg, F., Sood, E., Sananes, R., Pike, N. A., … Pemberton, V. L. (2017). Utilisation of early intervention services in young children with hypoplastic left heart syndrome. Cardiology in the Young, 28, 126133. doi:10.1017/S104795111700169XCrossRefGoogle ScholarPubMed
Nelson, C. A. (1999). Change and continuity in neurobehavioral development: Lessons from the study of neurobiology and neural plasticity. Infant Behavior & Development, 22, 415429. doi:10.1016/S0163-6383(00)00016-3CrossRefGoogle Scholar
Oyama, S. (2000). The ontogeny of information: Developmental systems and evolution. Durham, NC: Duke University Press.Google Scholar
Oyama, S., Griffiths, P., & Gray, R. D. (2001). Introduction: What is developmental systems theory? In Oyama, S., Griffiths, P. & Gray, R. D. (Eds.), Cycle of contingency: Developmental systems and evolution (pp. 111). Cambridge, MA: MIT Press.Google Scholar
Ozonoff, S., Young, G. S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., … Stone, W. L. (2011). Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics, 128, e488e495. doi: 10.1186/s13229-015-0027-y.Google ScholarPubMed
Petanjek, Z., Judaš, M., Šimic, G., Rasin, M. R., Uylings, H. B. M., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108, 1328113286. doi:10.1073/pnas.1105108108CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874887. doi:10.1001/archneur.1994.00540210046012CrossRefGoogle ScholarPubMed
Pohl, A., Jones, W. R., Marrus, N., Zhang, Y., Klin, A., & Constantino, J. N. (2019). Behavioral predictors of autism recurrence are genetically independent and influence social reciprocity: Evidence that polygenic ASD risk is mediated by separable elements of developmental liability. Translational Psychiatry, 9, 202. doi.org/10.1038/s41398-019-0545-zCrossRefGoogle ScholarPubMed
Prizant, B. M. (2015). Uniquely Human: a different way of seeing autism. New York and London: Simon & Schuster.Google Scholar
Razzaghi, H., Oster, M., & Reefhuis, J. (2015). Long-term outcomes in children with congenital heart disease: National Health Interview Survey. Journal of Pediatrics, 166, 119124. doi:10.1016/j.jpeds.2014.09.006CrossRefGoogle ScholarPubMed
Reichow, B, Hume, K, Barton, EE, & Boyd, BA. (2018). Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders (ASD). Cochrane Database Systematic Reviews, 5, CD009260. doi:10.1002/14651858.CD009260.pub3.Google Scholar
Richards, C., Jones, C., Groves, L., Moss, J., & Oliver, C. (2015). Prevalence of autism spectrum disorder phenomenology in genetic disorders: A systematic review and meta-analysis. The Lancet Psychiatry, 2, 909916. doi:10.1016/S2215-0366(15)00376-4CrossRefGoogle ScholarPubMed
Rimland, B. (1964). Infantile autism: The syndrome and its implications for a neural theory of behavior. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Roberts, M. Y. (2019). Parent-implemented communication treatment for infants and toddlers with hearing loss: A randomized pilot trial. Journal of Speech-Language and Hearing Research, 62, 143152. doi:10.1044/2018_JSLHR-L-18-0079CrossRefGoogle ScholarPubMed
Roberts, M. Y., & Kaiser, A. P. (2015). Early intervention for toddlers with language delays: A randomized controlled trial. Pediatrics, 135, 686693. doi:10.1542/peds.2014-2134CrossRefGoogle ScholarPubMed
Robins, D. L., Casagrande, K., Barton, M., Chen, C.-M. A., Dumont-Mathieu, T., & Fein, D. (2014). Validation of the modified checklist for Autism in toddlers, revised with follow-up (M-CHAT-R/F). Pediatrics, 133, 3745. doi:10.1542/peds.2013-1813CrossRefGoogle Scholar
Rutter, M. (1968). Concepts of autism: A review of research. Journal of Child Psychology and Psychiatry, 9, 125. doi:10.1111/j.1469-7610.1968.tb02204.xCrossRefGoogle ScholarPubMed
Rutter, M. (1978). Diagnosis and definition of childhood autism. Journal of Autism and Childhood Schizophrenia, 8, 139161. doi:10.1007/BF01537863CrossRefGoogle ScholarPubMed
Rutter, M., Greenfeld, D., & Lockyer, L. (1967). A five to fifteen year follow-up study of infantile psychosis. II. Social and behavioural outcome. The British Journal of Psychiatry: The Journal of Mental Science, 113, 11831199. doi:10.1192/bjp.113.504.1183CrossRefGoogle ScholarPubMed
Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., … State, M. W. W. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87, 12151233. doi:10.1016/j.neuron.2015.09.016CrossRefGoogle ScholarPubMed
Satterstrom, F. K., Kosmicki, J. A., Wang, J., Breen, M. S., De Rubeis, S., An, J.-Y., … Buxbaum, J. D. (2020). Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 180, 568584. doi:10.1016/j.cell.2019.12.036CrossRefGoogle ScholarPubMed
Schreibman, L., Dawson, G., Stahmer, A. C., Landa, R., Rogers, S. J., McGee, G. G., … Halladay, A. (2015). Naturalistic developmental behavioral interventions: Empirically validated treatments for autism spectrum disorder. Journal of Autism and Developmental Disorders, 45, 24112428. doi:10.1007/s10803-015-2407-8CrossRefGoogle ScholarPubMed
Shic, F., Bradshaw, J., Klin, A., Scassellati, B., & Chawarska, K. (2011). Limited activity monitoring in toddlers with autism spectrum disorder. Brain Research, 1380, 246254. doi:10.1016/j.brainres.2010.11.074CrossRefGoogle ScholarPubMed
Shonkoff, J. P. (2011). Protecting brains, not simply stimulating minds. Science, 333, 982983. doi:10.1126/science.1206014CrossRefGoogle Scholar
Shonkoff, J. P. (2017). Rethinking the definition of evidence-based interventions to promote early childhood development. Pediatrics, 140, e20173136. doi.org/10.1542/peds.2017-3136CrossRefGoogle ScholarPubMed
Shonkoff, J. P., & Bales, S. N. (2011). Science does not speak for itself: Translating child development research for the public and its policymakers. Child Development, 82, 1732. doi:10.1111/j.1467-8624.2010.01538.xCrossRefGoogle Scholar
Shultz, S., Klin, A., & Jones, W. (2018). Neonatal transitions in social behavior and their implications for autism. Trends in Cognitive Sciences, 22, 452469. doi:10.1016/j.tics.2018.02.012CrossRefGoogle ScholarPubMed
Silverman, C. (2012). Understanding autism. Princeton, NJ: Princeton University Press.Google Scholar
Siu, A. L., Bibbins-Domingo, K., Grossman, D. C., Baumann, L. C., Davidson, K. W., Ebell, M., … Pignone, M. P. (2016). Screening for autism spectrum disorder in young children. JAMA, 315, 691696. doi:10.1001/jama.2016.0018CrossRefGoogle ScholarPubMed
Sriganesh, R., & Ponniah, R. J. (2018). Genetics of language and its implications on language interventions. Journal of Genetics, 97, 14851491. doi:10.1007/s12041-018-1006-9CrossRefGoogle ScholarPubMed
State, M. W., & Sestan, N. (2012). The emerging biology of autism spectrum disorders. Science, 337, 13011303. doi:10.1126/science.1224989CrossRefGoogle ScholarPubMed
Stern, Y. S., Maltman, N., & Roberts, M. Y. (2017). The influence of maternal pragmatics on the language skills of children with autism. Journal of Developmental and Behavioral Pediatrics, 38, 339344. doi:10.1097/DBP.0000000000000445CrossRefGoogle ScholarPubMed
Sucksmith, E., Roth, I., & Hoekstra, R. A. (2011). Autistic traits below the clinical threshold: Re-examining the broader autism phenotype in the 21st century. Neuropsychology Review, 21, 360389. doi:10.1007/s11065-011-9183-9CrossRefGoogle ScholarPubMed
Super, C. M., & Harkness, S. (1986). The developmental Niche: A conceptualization at the interface of child and culture. International Journal of Behavioral Development, 9, 545569. doi:10.1177/016502548600900409CrossRefGoogle Scholar
Szatmari, P., Chawarska, K., Dawson, G., Georgiades, S., Landa, R., Lord, C., … Halladay, A. (2016). Prospective longitudinal studies of infant siblings of children with autism: Lessons learned and future directions. Journal of the American Academy of Child & Adolescent Psychiatry, 55, 179187. doi:10.1016/j.jaac.2015.12.014CrossRefGoogle ScholarPubMed
Szyf, M., & Bick, J. (2013). DNA methylation: A mechanism for embedding early life experiences in the genome. Child Development, 84, 4957. doi:10.1111/j.1467-8624.2012.01793.xCrossRefGoogle ScholarPubMed
Thapar, A. (2018). Discoveries on the genetics of ADHD in the 21st century: New findings and their implications. American Journal of Psychiatry, 175, 943950. doi:10.1176/appi.ajp.2018.18040383CrossRefGoogle ScholarPubMed
Tordjman, S., Cohen, D., Coulon, N., Anderson, G. M. M., Botbol, M., Canitano, R., & Roubertoux, P. L. L. (2017). Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity. Neuroscience & Biobehavioral Reviews, 80, 210. doi.org/10.1016/j.neubiorev.2017.01.030Google Scholar
US Department of Education. (2018). 40th Annual Report to Congress on the Implementation of the Individuals with Disabilities Education Act, Parts B and C. https://www2.ed.gov/about/reports/annual/osep/2018/parts-b-c/index.htmlGoogle Scholar
US Department of Health & Human Services. (2017). IACC Strategic Plan 2016-17. https://iacc.hhs.gov/publications/strategic-plan/2017/Google Scholar
Volkmar, F. R., Bregman, J., Cohen, D. J., & Cicchetti, D. V. (1988). DSM-III and DSM-III-R diagnoses of autism. American Journal of Psychiatry, 145, 14041408. doi:10.1176/ajp.145.11.1404Google ScholarPubMed
Volkmar, F. R., Lord, C., Bailey, A., Schultz, R. T., & Klin, A. (2004). Autism and pervasive developmental disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45, 135170. doi:10.1046/j.0021-9630.2003.00317.xCrossRefGoogle ScholarPubMed
Volkmar, F. R., & McPartland, J. C. (2014). From kanner to DSM-5: Autism as an evolving diagnostic concept. Annual Review of Clinical Psychology, 10, 193212. doi:10.1146/annurev-clinpsy-032813-153710CrossRefGoogle ScholarPubMed
Warren, Z., McPheeters, M. L., Sathe, N., Foss-Feig, J. H., Glasser, A., & Veenstra-Vanderweele, J. (2011). A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics, 127, e1303e1311. doi:10.1542/peds.2011-0426CrossRefGoogle ScholarPubMed
Warren, S. T., Zhang, F., Licameli, G. R., & Peters, J. F. (1987). The fragile X site in somatic cell hybrids: An approach for molecular cloning of fragile sites. Science, 237, 420423. doi:10.1126/science.3603029CrossRefGoogle ScholarPubMed
Wernovsky, G., & Licht, D. J. (2016). Neurodevelopmental outcomes in children with congenital heart disease-what can we impact? Pediatric Critical Care Medicine, 17, S232S242. doi:10.1097/PCC.0000000000000800CrossRefGoogle ScholarPubMed
Wetherby, A. M., Guthrie, W., Woods, J., Schatschneider, C., Holland, R. D., Morgan, L., & Lord, C. (2014). Parent-implemented social intervention for toddlers with autism: An RCT. Pediatrics, 134, 10841093. doi:10.1542/peds.2014-0757CrossRefGoogle Scholar
Wetherby, A. M., Woods, J., Allen, L., Cleary, J., Dickinson, H., & Lord, C. (2004). Early indicators of autism spectrum disorders in the second year of life. Journal of Autism and Developmental Disorders, 34, 473493. doi:10.1007/s10803-004-2544-yCrossRefGoogle Scholar
White, T. J. H. (2019). Brain development and stochastic processes during prenatal and early life: You can't lose it if you've never had it; but it's better to have it and lose it, than never to have had it at all. Journal of the American Academy of Child and Adolescent Psychiatry, 58, 10421050. doi:10.1016/j.jaac.2019.02.010CrossRefGoogle ScholarPubMed
Whitehouse, A. J. O., Varcin, K. J., Alvares, G. A., Barbaro, J., & Hudry, K. (2019). Pre-emptive intervention versus treatment as usual for infants showing early behavioral risk signs of autism spectrum disorder: A single-blind, randomised controlled trial. Lancet Child & Adolescent Health, 3, 605615. doi:10.1016/S2352-4642(19)30184-1CrossRefGoogle ScholarPubMed
Wing, L. (1964). Autistic children. London: N.A.M.H.Google Scholar
Wing, J. K., O'Connor, N., & Lotter, V. (1967). Autistic conditions in early childhood: A survey in middlesex. British Medical Journal, 3, 389392. doi:10.1136/bmj.3.5562.389CrossRefGoogle ScholarPubMed
Yudell, M., Tabor, H. K., Dawson, G., Rossi, J., Newschaffer, C., & Working Group in Autism Risk Communication and Ethics. (2013). Priorities for autism spectrum disorder risk communication and ethics. Autism, 17, 701722. doi:10.1177/1362361312453511CrossRefGoogle ScholarPubMed
Zaffiri, L., Gardner, J., & Toledo-Pereyra, L. H. (2012). History of antibiotics. From Salvarsan to Cephalosporins. Journal of Investigative Surgery, 25, 6777. doi:10.3109/08941939.2012.664099CrossRefGoogle ScholarPubMed
Zoghbi, H. Y., Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., & Francke, U. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185188. doi:10.1038/13810Google Scholar
Zwaigenbaum, L., Bauman, M. L., Stone, W. L., Yirmiya, N., Estes, A., Hansen, R. L., … Wetherby, A. (2015). Early identification of autism spectrum disorder: Recommendations for practice and research. Pediatrics, 136, S10S40. doi:10.1542/peds.2014-3667CCrossRefGoogle ScholarPubMed
Zwaigenbaum, L., Bryson, S., Lord, C., Rogers, S., Carter, A., Carver, L., … Yirmiya, N. (2009). Clinical assessment and management of toddlers with suspected autism spectrum disorder: Insights from studies of high-risk infants. Pediatrics, 123, 13831391. doi:10.1542/peds.2008-1606CrossRefGoogle ScholarPubMed