Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T20:26:59.011Z Has data issue: false hasContentIssue false

Accelerated epigenetic aging at birth interacts with parenting hostility to predict child temperament and subsequent psychological symptoms

Published online by Cambridge University Press:  08 October 2021

Erika M. Manczak*
Affiliation:
Department of Psychology, University of Denver, Denver, CO, USA
Samantha R. Scott
Affiliation:
Department of Psychology, University of Denver, Denver, CO, USA
Summer N. Millwood
Affiliation:
Department of Psychology, University of Denver, Denver, CO, USA
*
Author for correspondence: Erika M. Manczak, 2155 Race St., Denver, CO 80208; E-mail: [email protected]

Abstract

In an effort to elucidate new factors that may contribute to developmental psychopathology, the current study examined whether accelerated epigenetic aging at birth related to children's differential susceptibility to the effects of aversive parenting on early emerging mental health risk. Using data from a multiethnic birth cohort, the interaction between Horvath's methylation age in umbilical cord blood and hostile parenting behaviors was examined in relation to perceptions of infant's temperament at 6 months and to children's psychological symptoms at 3 years in 154 families. Results broadly revealed that children with higher levels of accelerated methylation aging evinced more unpredictable temperaments and more psychological symptoms if their mothers reported more hostile parenting, but showed fewer difficulties if mothers engaged in less hostile parenting; children with lower levels of accelerated methylation age did not show associations between hostility and temperament or psychological symptoms. Effects were not accounted for by gestational age at birth, demographic factors, or the distribution of cell subtypes. These findings suggest that accelerated epigenetic age may function as a form of differential susceptibility, signaling increased risk for psychopathology in more aversive contexts but decreased risk in less aversive early environments. Taken together, they point to a novel biological process to consider within risk for psychopathology.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, J. E., Freeland, C. A. B., & Lounsbury, M. L. (1979). Measurement of infant difficultness. Child Development, 50, 794803.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Brody, G. H., Miller, G. E., Yu, T., Beach, S. R. H., & Chen, E. (2016). Supportive family environments ameliorate the link between racial discrimination and epigenetic aging: A replication across two longitudinal cohorts. Psychological Science, 27, 530541. doi:10.1177/0956797615626703CrossRefGoogle ScholarPubMed
Brody, G. H., Yu, T., Chen, E., Beach, S. R. H., & Miller, G. E. (2016). Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging. Journal of Child Psychology and Psychiatry, 57, 566574. doi:10.1111/jcpp.12495CrossRefGoogle ScholarPubMed
Bryant, M., Santorelli, G., Fairley, L., West, J., Lawlor, D. A., Bhopal, R, … Born in Bradford Childhood Obesity Scientific Group, . (2013). Design and characteristics of a new birth cohort, to study the early origins and ethnic variation of childhood obesity: The BiB1000 study. Longitudinal and Life Course Studies, 4(2), 119135.Google Scholar
Cicchetti, D., & Toth, S. L. (2006). Building bridges and crossing them: Translational research in developmental psychopathology. Development and Psychopathology, 18, 619622. doi:10.1017/S0954579406060317CrossRefGoogle ScholarPubMed
Clukay, C. J., Hughes, D. A., Kertes, D. A., & Mulligan, C. J. (2019). Associations between maternal psychosocial stress, DNA methylation, and newborn birth weight identified by investigating methylation at individual, regional, and genome levels. Human Biology, 91, 117131. doi:10.13110/humanbiology.91.2.04CrossRefGoogle ScholarPubMed
Cohen, D. J., Dibble, E., & Grawe, J. M. (1977). Parental style: Mothers’ and fathers’ perceptions of their relations with twin children. Archives of General Psychiatry, 34, 445451. doi:10.1001/archpsyc.1977.01770160079006CrossRefGoogle ScholarPubMed
Colquhoun, D. R., Goldman, L. R., Cole, R. N., Gucek, M., Mansharamani, M., Witter, F. R., … Halden, R. U. (2009). Global screening of human cord blood proteomes for biomarkers of toxic exposure and effect. Environmental Health Perspectives, 117, 832838. doi:10.1289/ehp.11816CrossRefGoogle ScholarPubMed
Dalrymple, K. L., & Zimmerman, M. (2011). Age of onset of social anxiety disorder in depressed outpatients. Journal of Anxiety Disorders, 25, 131137. doi:10.1016/j.janxdis.2010.08.012CrossRefGoogle ScholarPubMed
Durbeej, N., Sörman, K., Norén Selinus, E., Lundström, S., Lichtenstein, P., Hellner, C., & Halldner, L. (2019). Trends in childhood and adolescent internalizing symptoms: Results from Swedish population based twin cohorts. BMC Psychology, 7, 110. doi:10.1186/s40359-019-0326-8CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.1017/s0954579410000611CrossRefGoogle Scholar
Ercan, E. S., Polanczyk, G., Akyol Ardıc, U., Yuce, D., Karacetın, G., Tufan, A. E., … Yıldız, N. (2019). The prevalence of childhood psychopathology in Turkey: A cross-sectional multicenter nationwide study (EPICPAT-T). Nordic Journal of Psychiatry, 73, 132140. doi:10.1080/08039488.2019.1574892CrossRefGoogle Scholar
Field, A. E., Robertson, N. A., Wang, T., Havas, A., Ideker, T., & Adams, P. D. (2018). DNA methylation clocks in aging: Categories, causes, and consequences. Molecular Cell, 71, 882895. doi:10.1016/j.molcel.2018.08.008CrossRefGoogle ScholarPubMed
Garay, P. A., & McAllister, A. K. (2010). Novel roles for immune molecules in neural development: Implications for neurodevelopmental disorders. Frontiers in Synaptic Neuroscience, 2, 116. doi:10.3389/fnsyn.2010.00136CrossRefGoogle ScholarPubMed
Goodman, R. (1997). The strengths and difficulties questionnaire: A research note. Journal of Child Psychology and Psychiatry, 38, 581586.CrossRefGoogle ScholarPubMed
Goodman, R. (2001). Psychometric properties of the strengths and difficulties questionnaire. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 13371345. doi:10.1097/00004583-200111000-00015CrossRefGoogle ScholarPubMed
Goodyer, I. M., Park, R. J., Netherton, C. M., & Herbert, J. (2001). Possible role of cortisol and dehydroepiandrosterone in human development and psychopathology. The British Journal of Psychiatry, 179(3), 243249.CrossRefGoogle ScholarPubMed
Grosser, A., Razum, O., Vrijkotte, T. G. M., Hinz, I. M., & Spallek, J. (2016). Inclusion of migrants and ethnic minorities in European birth cohort studies: A scoping review. European Journal of Public Health, 26, 984991. doi:10.1093/eurpub/ckw068CrossRefGoogle ScholarPubMed
Han, L. K. M., Aghajani, M., Clark, S. L., Chan, R. F., Hattab, M. W., Shabalin, A. A., … Penninx, B. W. J. H. (2018). Epigenetic aging in major depressive disorder. American Journal of Psychiatry, 175, 774782. doi:10.1176/appi.ajp.2018.17060595CrossRefGoogle ScholarPubMed
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, 129.CrossRefGoogle ScholarPubMed
Javed, R., Chen, W., Lin, F., & Liang, H. (2016). Infant's DNA methylation age at birth and epigenetic aging accelerators. BioMed Research International, 2016, 110, doi:10.1155/2016/4515928CrossRefGoogle ScholarPubMed
Kessler, R. C. (2012). The cost of depression. Psychiatric Clinics of North America, 35, 114. doi:10.1016/j.psc.2011.11.005CrossRefGoogle ScholarPubMed
Kim-Cohen, J., Caspi, A., Moffitt, T. E., Harrington, H. L., Milne, B. J., & Poulton, R. (2003). Prior juvenile diagnoses in adults with mental disorder: Developmental follow-back of a prospective-longitudinal cohort. Archives of General Psychiatry, 60, 709717. doi:10.1001/archpsyc.60.7.709CrossRefGoogle ScholarPubMed
Knight, A. K., Craig, J. M., Theda, C., Baekvad-Hansen, M., Bybjerg-Grauholm, J., Hansen, C. S., … Smith, A. K. (2016). An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biology, 17, 111.CrossRefGoogle ScholarPubMed
Lewinsohn, P. M., Rohde, P., & Seeley, J. R. (1995). Adolescent psychopathology: III. The clinical consequences of comorbidity. Journal of the American Academy of Child and Adolescent Psychiatry, 34, 510519. doi:10.1097/00004583-199504000-00018CrossRefGoogle ScholarPubMed
Manczak, E. M., & Gotlib, I. H. (2019). Lipid profiles at birth predict teacher-rated child emotional and social development 5 years later. Psychological Science, 30, 17801789. doi:10.1177/0956797619885649CrossRefGoogle ScholarPubMed
McEwen, L. M., Jones, M. J., Lin, D. T. S., Edgar, R. D., Husquin, L. T., MacIsaac, J. L., … Kobor, M. S. (2018). Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the infinium MethylationEPIC beadchip array. Clinical Epigenetics, 10, 19. doi:10.1186/s13148-018-0556-2CrossRefGoogle ScholarPubMed
Merikangas, K. R., Nakamura, E. F., & Kessler, R. C. (2009). Epidemiology of mental disorders in children and adolescents. Dialogues in Clinical Neuroscience, 11, 720.CrossRefGoogle ScholarPubMed
Miller, G., Chen, E., & Cole, S. W. (2009). Health psychology: Developing biologically plausible models linking the social world and physical health. Annual Review of Psychology, 60, 501524.CrossRefGoogle ScholarPubMed
Miller, G. E., Yu, T., Chen, E., & Brody, G. H. (2015). Self-control forecasts better psychosocial outcomes but faster epigenetic aging in low-SES youth. Proceedings of the National Academy of Sciences, 112, 1032510330.CrossRefGoogle ScholarPubMed
Min, J. L., Hemani, G., Davey Smith, G., Relton, C., & Suderman, M. (2018). Meffil: Efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics (Oxford, England), 34, 39833989. doi:10.1093/bioinformatics/bty476Google ScholarPubMed
Mitchell, R. H. B., & Goldstein, B. I. (2014, March). Inflammation in children and adolescents with neuropsychiatric disorders: A systematic review. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 274296. doi:10.1016/j.jaac.2013.11.013CrossRefGoogle ScholarPubMed
Morin, A. M., Gatev, E., McEwen, L. M., Macisaac, J. L., Lin, D. T. S., Koen, N., … Jones, M. J. (2017). Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs. Clinical Epigenetics, 9, 19. doi:10.1186/s13148-017-0370-2CrossRefGoogle ScholarPubMed
Morris, A. S., Silk, J. S., Steinberg, L., Sessa, F. M., Avenevoli, S., & Essex, M. J. (2002). Temperamental vulnerability and negative parenting as interacting predictors of child adjustment. Journal of Marriage and Family, 64, 461471. doi:10.1111/j.1741-3737.2002.00461.xCrossRefGoogle Scholar
Murris, P., & Ollendick, T. H. (2005). The role of temperament in the etiology of child psychopathology. Clinical Child and Family Psychology Review, 8, 271289.CrossRefGoogle Scholar
Nigg, J. T. (2006). Temperament and developmental psychopathology. Journal of Child Psychology and Psychiatry, 47, 395422. doi:10.1111/j.1469-7610.2006.01612.xCrossRefGoogle ScholarPubMed
Palma-Gudiel, H., Fañanás, L., Horvath, S., & Zannas, A. S. (2020). Psychosocial stress and epigenetic aging. In International review of neurobiology (1st ed., Vol. 150). Elsevier Inc. doi:10.1016/bs.irn.2019.10.020Google Scholar
Perna, L., Zhang, Y., Mons, U., Holleczek, B., Saum, K.-U., & Brenner, H. (2016). Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clinical Epigenetics, 8, 17.CrossRefGoogle Scholar
Raynor, P., & The Born in Bradford Collaborative Group (2008). Born in Bradford, a cohort study of babies born in bradford, and their parents: Protocol for the recruitment phase. BMC Public Health, 8, 513530.CrossRefGoogle Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis-stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409. doi:10.1017/S0954579412000065CrossRefGoogle ScholarPubMed
Ryan, C. P. (2020). “Epigenetic clocks”: Theory and applications in human biology. American Journal of Human Biology, 118. doi:10.1002/ajhb.23488Google Scholar
Sharp, G., Alfano, R., Lawlor, D., Sorensen, T. I., London, S., Felix, J., & Relton, C. (2020). Paternal body mass index and offspring DNA methylation: Findings from the PACE consortium. doi:10.1101/2020.03.10.20020099CrossRefGoogle Scholar
Simões e Siva, A. C., Moreira, J. M., & Magalhães, R. C. (2020). Placenta and cord blood as source of immune markers of offspring neurodevelopment and psychopathology. Perinatal Inflammation and Adult Psychopathology, 239252. doi:10.1007/978-3-030-39335-9_14CrossRefGoogle Scholar
Simpkin, A. J., Hemani, G., Suderman, M., Gaunt, T. R., Lyttleton, O., Mcardle, W. L., … Smith, G. D. (2016). Prenatal and early life influences on epigenetic age in children: A study of mother–offspring pairs from two cohort studies. Human Molecular Genetics, 25, 191201.CrossRefGoogle ScholarPubMed
Sumner, J. A., Colich, N. L., Uddin, M., Armstrong, D., & McLaughlin, K. A. (2019). Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents. Biological Psychiatry, 85, 268278. doi:10.1016/j.biopsych.2018.09.008CrossRefGoogle Scholar
Twenge, J. M., Cooper, A. B., Joiner, T. E., Duffy, M. E., & Binau, S. G. (2019). Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005-2017. Journal of Abnormal Psychology, 128, 185199. doi:10.1037/abn0000410CrossRefGoogle Scholar
Vando, J., Rhule-Louie, D. M., McMahon, R. J., & Spieker, S. J. (2008). Examining the link between infant attachment and child conduct problems in grade 1. Journal of Child and Family Studies, 17, 615628. doi:10.1007/s10826-007-9173-yCrossRefGoogle Scholar
Wolf, E. J., Logue, M. W., Hayes, J. P., Sadeh, N., Schichman, S. A., Stone, A., … Miller, M. W. (2016). Accelerated DNA methylation age: Associations with PTSD and neural integrity. Psychoneuroendocrinology, 63, 155162.CrossRefGoogle ScholarPubMed
Wolf, E., Logue, M., Stoop, T., Schichman, S., Stone, A., Sadeh, N., … Miller, M. (2018). Accelerated DNA methylation Age: Associations With posttraumatic stress disorder and mortality. Psychosomatic Medicine, 80, 4248. doi:10.1097/PSY.0000000000000506CrossRefGoogle ScholarPubMed
Wright, J., Small, N., Raynor, P., Tuffnell, D., Bhopal, R., Cameron, N., … West, J. (2013). Cohort profile: The born in Bradford multi-ethnic family cohort study. International Journal of Epidemiology, 42(4), 978991.CrossRefGoogle ScholarPubMed
Zaghlool, S., Al-Shafai, M., Kumar, P., Falchi, M., & Suhre, K. (2015). Association of DNA methylation with age, gender, and smoking in an Arab population. Clinical Epigenetics, 7, 112.CrossRefGoogle Scholar
Zisook, S., Lesser, I., Stewart, J. W., Wisniewski, S. R., Balasubramani, G. K., Fava, M., … Rush, A. J. (2007). Effect of age at onset on the course of major depressive disorder. American Journal of Psychiatry, 164, 15391546. doi:10.1176/appi.ajp.2007.06101757CrossRefGoogle ScholarPubMed
Supplementary material: File

Manczak et al. supplementary material

Tables S1-S3

Download Manczak et al. supplementary material(File)
File 67.9 KB