Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T15:24:50.549Z Has data issue: false hasContentIssue false

Stress physiology and developmental psychopathology: Past, present, and future

Published online by Cambridge University Press:  17 December 2013

Jenalee R. Doom*
Affiliation:
University of Minnesota Institute of Child Development
Megan R. Gunnar
Affiliation:
University of Minnesota Institute of Child Development
*
Address correspondence and reprint requests: Jenalee R. Doom, Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455; E-mail: [email protected].

Abstract

Research on the hypothalamic–pituitary–adrenocortical (HPA) axis has emerged as a vital area within the field of developmental psychopathology in the past 25 years. Extensive animal research has provided knowledge of the substrates and physiological mechanisms that guide development of stress reactivity and regulation using methods that are not feasible in humans. Recent advances in understanding the anatomy and physiology of the HPA axis in humans and its interactions with other stress-mediating systems, including accurate assessment of salivary cortisol, more sophisticated neuroimaging methods, and a variety of genetic analyses, have led to greater knowledge of how psychological and biological processes impact functioning. A growing body of research on HPA axis regulation and reactivity in relation to psychopathology has drawn increased focus on the prenatal period, infancy, and the pubertal transition as potentially sensitive periods of stress system development in children. Theories such as the allostatic load model have guided research by integrating multiple physiological systems and mechanisms by which stress can affect mental and physical health. However, almost none of the prominent theoretical models in stress physiology are truly developmental, and future work must incorporate how systems interact with the environment across the life span in normal and atypical development. Our theoretical advancement will depend on our ability to integrate biological and psychological models. Researchers are increasingly realizing the importance of communication across disciplinary boundaries in order to understand how experiences influence neurobehavioral development. It is important that knowledge gained over the past 25 years has been translated to prevention and treatment interventions, and we look forward to the dissemination of interventions that promote recovery from adversity.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilera, G., Millan, M. A., Hauger, R. L., & Catt, K. J. (1987). Corticotropin-releasing factor receptors: Distribution and regulation in brain, pituitary, and peripheral tissues. Annals of the New York Academy of Sciences, 512, 4866.Google Scholar
Albers, E. M., Riksen-Walraven, J. M., Sweep, F. C., & de Weerth, C. (2008). Maternal behavior predicts infant cortisol recovery from a mild everyday stressor. Journal of Child Psychology & Psychiatry, 49, 97103.Google Scholar
Andersen, S. L., & Teicher, M. H. (2009). Desperately driven and no brakes: Developmental stress exposure and subsequent risk for substance abuse. Neuroscience & Biobehavioral Reviews, 33, 516524.Google Scholar
Andrews, J. G. (1978). Life event stress and psychiatric illness. Psychological Medicine, 8, 545549.Google Scholar
Arnsten, A. F. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410422.Google Scholar
Barker, D. J. (1998). In utero programming of chronic disease. Clinical Science, 95, 115128.CrossRefGoogle ScholarPubMed
Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261, 412417.CrossRefGoogle ScholarPubMed
Bauer, A. M., Quas, J. A., & Boyce, W. T. (2002). Associations between physiological reactivity and children's behavior: Advantages of a multisystem approach. Journal of Developmental and Behavioral Pediatrics, 23, 102113.CrossRefGoogle ScholarPubMed
Belsky, J. (1997). Variation in susceptibility to environmental influences: An evolutionary argument. Psychological Inquiry, 8, 182186.Google Scholar
Belsky, J., & Pleuss, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Putz, B., et al. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36, 13191325.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary- developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Bradley, R. G., Binder, E. B., Epstein, M. P., Tang, Y., Nair, H. P., Liu, W., et al. (2008). Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene. Archives of General Psychiatry, 65, 190200.Google Scholar
Braff, D. L., Freedman, R., Schork, N. J., & Gottesman, I. I. (2007). Deconstructing schizophrenia: An overview of the use of endophenotypes in order to understand a complex disorder. Schizophrenia Bulletin, 33, 2132.CrossRefGoogle ScholarPubMed
Brouwer, J. P., Appelhof, B. C., van Rossum, E. F., Koper, J. W., Fliers, E., Huyser, J., et al. (2006). Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression. Psychoneuroendocrinology, 31, 11541163.Google Scholar
Burke, P. M., Reichler, R. J., Smith, E., Dugaw, K., McCauley, E., & Mitchell, J. (1985). Correlation between serum and salivary cortisol levels in depressed and nondepressed children and adolescents. American Journal of Psychiatry, 142, 10651067.Google ScholarPubMed
Carpenter, L. L, Carvalho, J. P., Tyrka, A. R., Wier, L. M., Mello, A. F., Mello, M. F., et al. (2007). Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biological Psychiatry, 62, 10801087.Google Scholar
Carrion, V. G., Weems, C. F., Ray, R. D., Glaser, B., Hessl, D., & Reiss, A. L. (2002). Diurnal salivary cortisol in pediatric posttraumatic stress disorder. Journal of Biological Psychiatry, 51, 575582.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Cicchetti, D. (2010). Resilience under conditions of extreme stress: A multilevel perspective. World Psychiatry, 9, 145154.CrossRefGoogle Scholar
Cicchetti, D. (Ed.). (2011a). Allostatic load: Part 1 [Special issue]. Development and Psychopathology, 23, 723954.Google Scholar
Cicchetti, D. (Ed.). (2011b). Allostatic load: Part 2 [Special issue]. Development and Psychopathology, 23, 9551212.Google Scholar
Cicchetti, D., & Gunnar, M. R. (2008). Integrating biological processes into the design and evaluation of preventive interventions. Development and Psychopathology, 20, 7371021.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677693.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2012). Neuroendocrine regulation and emotional adaptation in the context of child maltreatment. Monographs of the Society for Research in Child Development, 77, 8795.CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, L. (2010). The differential impacts of early abuse on internalizing problems and diurnal cortisol activity in school-aged children. Child Development, 81. 252269.Google Scholar
Cicchetti, D., Rogosch, F. A., & Oshri, A. (2011). Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and Psychopathology, 23, 11251138.Google Scholar
Cicchetti, D., Rogosch, F. A., Toth, S. L., & Sturge-Apple, M. L. (2011). Normalizing the development of cortisol regulation in maltreated infants through preventive interventions. Developmental and Psychopathology, 23, 789800.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.Google Scholar
Coe, C. L., Mendoza, S. P., Smotherman, W. P., & Levine, S. (1978). Mother–infant attachment in the squirrel monkey: Adrenal response to separation. Behavioral Biology, 22, 256263.CrossRefGoogle ScholarPubMed
Dackis, M. N., Rogosch, F. A., Oshri, A., & Cicchetti, D. (2012). The role of limbic system irritability in linking history of childhood maltreatment and psychiatric outcomes in low- income, high-risk women: Moderation by FK506 binding protein 5 haplotype. Development and Psychopathology, 24, 12371252.Google Scholar
Dahl, R. E., & Gunnar, M. R. (2009). Heightened stress responsiveness and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21, 16.CrossRefGoogle ScholarPubMed
Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 106, 2939.Google Scholar
De Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology part I: Biological stress systems. Biological Psychiatry, 45, 12591270.Google Scholar
De Bellis, M., Chrousos, G., Dorn, L., Burke, L., Helmers, K., Kling, M., et al. (1994). Hypothalamic–pituitary–adrenal axis dysregulation in sexually abused girls. Journal of Clinical Endocrinology & Metabolism, 78, 249255.Google Scholar
de Kloet, E. R., Vreugdenhil, E., Oitzl, M., & Joëls, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19, 269301.Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience and Biobehavioral Reviews, 35, 15621592.Google Scholar
DeRijk, R. H., van Leeuwen, N., Klok, M. D., & Zitman, F. G. (2009). Corticosteroid receptor- gene variants: Modulators of the stress-response and implications for mental health. European Journal of Pharmacology, 585, 492501.Google Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391.Google Scholar
Doane, L. D., & Adam, E. K. (2010). Loneliness and cortisol: Momentary, day-to-day, and trait associations. Psychoneuroendocrinology, 35, 430441.Google Scholar
Doom, J. R., Cicchetti, D., Rogosch, F. A., & Dackis, M. N. (2013). Child maltreatment and gender interactions as predictors of differential neuroendocrine profiles. Manuscript submitted for publication.Google Scholar
Dozier, M., Peloso, E., Lewis, E., Laurenceau, J., & Levine, S. (2008). Effects of an attachment- based intervention on the cortisol production of infants and toddlers in foster care. Development and Psychopathology, 20, 845859.Google Scholar
Edwards, V. J., Holden, G. W., Felitti, V. J., & Anda, R. F. (2003). Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: Results from the Adverse Childhood Experiences (ACE) Study. American Journal of Psychiatry, 160, 14531460.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary– neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
El-Sheikh, M., Erath, S. A., Buckhalt, J. A., Granger, D. A., & Mize, J. (2008). Cortisol and children's adjustment: The moderating role of sympathetic nervous system activity. Journal of Abnormal Child Psychology. 36, 601611.CrossRefGoogle ScholarPubMed
Feder, A., Coplan, J. D., Goetz, R. R., Mathew, S. J., Pine, D. S., Dahl, R. E., et al. (2004). Twenty-four-hour cortisol secretion patterns in prepubertal children with anxiety or depressive disorders. Biological Psychiatry, 56, 198204.Google Scholar
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., et al. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The adverse childhood experiences (ACE) study. American Journal of Preventive Medicine, 14, 245258.Google Scholar
Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. O. (2007). Effects of a therapeutic intervention for foster preschoolers on daytime cortisol activity. Psychoneuroendocrinology. 32, 892905.Google Scholar
Flinn, M. V. (2006). Evolution and ontogeny of stress response to social challenge in the human child. Developmental Review, 26, 138174.Google Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. (2005). A new view on hypocortisolism. Psychoneuoendocrinology, 30, 10101016.Google Scholar
Fristad, M. A., Weller, E. B., Weller, R. A., Teare, M., & Preskorn, S. H. (1988). Self-report vs. biological markers in assessment of childhood depression. Journal of Affective Disorders, 15, 339–45.Google Scholar
Gillespie, C. F., Phifer, J., Bradley, B., & Ressler, K. J. (2009). Risk and resilience: Genetic and environmental influences on development of the stress response. Depression and Anxiety, 26, 984992.Google Scholar
Gitau, R., Fisk, N. M., Teixeira, J. M., Cameron, A., & Glover, V. (2001). Fetal hypothalamic– pituitary–adrenal stress responses to invasive procedures are independent of maternal responses. Journal of Clinical Endocrinology & Metabolism, 86, 104109.Google Scholar
Goldstein, D. S., & Kopin, I. J. (2008). Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: A meta-analysis. Endocrine Regulations, 42, 111119.Google Scholar
Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2006). Asymmetry between salivary cortisol and alpha-amylase reactivity to stress: Relation to aggressive behavior in adolescents. Psychoneuroendocrinology, 31, 976987.Google Scholar
Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847851.CrossRefGoogle ScholarPubMed
Gray, L., Watt, L., & Blass, E. M. (2000). Skin-to-skin contact is analgesic in healthy newborns. Pediatrics, 105, e14.Google Scholar
Groeneweg, F. L., Karst, H., de Kloet, E. R., & Joëls, M. (2011). Rapid non-genomic effects of corticosteroids and their role in the central stress response. Journal of Endocrinology, 209, 153–67.Google Scholar
Gunnar, M. R., & Cicchetti, D. (2009). Meeting the challenge of translational research in child development. In Gunnar, M. R. & Cicchetti, D. (Eds.), Minnesota symposia on child psychology: Vol. 35. Meeting the challenge of translational research in child psychology (pp. 127). Hoboken, NJ: Wiley.Google Scholar
Gunnar, M. R., & Davis, E. P. (in press). The effects of stress on early brain and behavioral development. In Rakic, P. & Rubenstein, J. (Section Eds.), Developmental neuroscience: Basic and clinical mechanisms (chap. 63). New York: Elsevier.Google Scholar
Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220.Google Scholar
Gunnar, M. R., Fisch, R. O., & Malone, S. (1984). The effects of pacifying stimulus on behavioral and adrenocortical responses to circumcision in the newborn. Journal of the American Academy of Child Psychiatry, 23, 3438.Google Scholar
Gunnar, M. R., Mangelsdorf, S., Larson, M., & Hertsgaard, L. (1989). Attachment, temperament and adrenocortical activity in infancy: A study of psychoendocrine regulation. Developmental Psychology, 25, 355363.Google Scholar
Gunnar, M. R., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.Google Scholar
Gunnar, M. R., Talge, N. M., & Herrera, A. (2009). Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology. 34, 953967.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Developmental neuroscience (2nd ed., pp. 533577). Hoboken, NJ: Wiley.Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in HPA axis activity over the transition to adolescence: Normative changes and associations with pubertal stage. Development and Psychopathology, 21, 6985.Google Scholar
Hankin, B. L. (2012). Future directions in vulnerability to depression among youth: Integrating risk factors and processes across multiple levels of analysis. Journal of Clinical Child & Adolescent Psychology, 41, 695718.Google Scholar
Hart, J., Gunnar, M., & Cicchetti, D. (1995). Salivary cortisol in maltreated children: Evidence of relations between neuroendocrine activity and social competence. Development and Psychopathology, 7, 1126.Google Scholar
Hart, J., Gunnar, M., & Cicchetti, D. (1996). Altered neuroendocrine activity in maltreated children related to symptoms of depression. Development and Psychopathology, 8, 201214.Google Scholar
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology. 25, 135.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Wagner, D., Wilcox, M. M., Miller, A. H., & Nemeroff, C. B. (2002). The role of early adverse experience and adulthood stress in the prediction of neuroendocrine stress reactivity in women: A multiple regression analysis. Depression & Anxiety, 15, 117125.Google Scholar
Hellhammer, D. H., Buchtal, J., Gutberlet, I., & Kirschbaum, C. (1997). Social hierarchy and adrenocortical stress reactivity in men. Psychoneuroendocrinology, 22, 643650.Google Scholar
Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24, 151180.Google Scholar
Herman, J. P., Prewitt, C. M., & Cullinan, W. E. (1996). Neuronal circuit regulation of the hypothalamo–pituitary–adrenocortical stress axis. Critical Reviews in Neurobiology, 10, 371394.Google Scholar
Hostinar, C. E., & Gunnar, M. R. (2013). The developmental psychobiology of stress and emotion in childhood. In Weiner, I. B., Freedheim, D. K., & Lerner, R. M. (Eds.), Handbook of psychology (2nd ed.). Hoboken, NJ: Wiley.Google Scholar
Hostinar, C. E., Sullivan, R., & Gunnar, M. R. (2013). Psychobiological mechanisms underlying the social buffering of stress: A review of animal models and human studies across development. Manuscript submitted for publication.Google Scholar
Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience. 10, 459466.Google Scholar
Jung-Testas, I., & Baulieu, E. E. (1983). Inhibition of glucocorticosteroid action in cultured L-929 mouse fibroblasts by RU 486, a new anti-glucocorticosteroid of high affinity for the glucocorticosteroid receptor. Experimental Cell Research, 147, 177182.CrossRefGoogle ScholarPubMed
Kaffman, A., & Meaney, M. J. (2007). Neurodevelopmental sequelae of postnatal maternal care in rodents: Clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry, 48, 224244.Google Scholar
Kempnå, P, & Flück, C. E. (2008). Adrenal gland development and defects. Best Practice & Research Clinical Endocrinology & Metabolism, 22, 7793.Google Scholar
Kirschbaum, C., Klauer, T., Filipp, S. H., & Hellhammer, D. H. (1995). Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosomatic Medicine, 57, 2331.Google Scholar
Koenen, K. C., Saxe, G., Purcell, S., Smoller, J. W., Bartholomew, D., Miller, A., et al. (2005). Polymorphisms in FKBP5 are associated with peritraumatic dissociation in medically injured children. Molecular Psychiatry, 10, 10581059.Google Scholar
Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 583, 204214.Google Scholar
Kruesi, M. J., Schmidt, M. E., Donnelly, M., Hibbs, E. D., & Hamburger, S. D. (1989). Urinary free cortisol output and disruptive behavior in children. Journal of the American Academy of Child & Adolescent Psychiatry, 28, 441443.CrossRefGoogle ScholarPubMed
Kudielka, B. M., Broderick, J. E., & Kirschbaum, C. (2003). Compliance with saliva sampling protocols: Electronic monitoring reveals invalid cortisol daytime profiles in noncompliant subjects. Psychosomatic Medicine, 65, 313319.CrossRefGoogle ScholarPubMed
Kudielka, B. M., & Kirschbaum, C. (2005). Sex differences in HPA axis response to stress: A review. Biological Psychology, 69, 113132.Google Scholar
Leckman, J. F., & Yazgan, M. Y. (2010). Developmental transitions to psychopathology: from genomics and epigenomics to social policy [Special issue]. Journal of Child Psychology and Psychiatry, 51(4).Google Scholar
Levine, S. (1957). Infantile experience and resistance to physiological stress. Science, 126, 405406.Google Scholar
Licinio, J., O'Kirwan, F., Irizarry, K., Merriman, B., Thakur, S., Jepson, R., et al. (2004). Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Molecular Psychiatry. 9, 10751082.Google Scholar
Liu, Z., Zhu, F., Wang, G., Xiao, Z., Wang, H., Tang, J., et al. (2006). Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neuroscience Letters, 404, 358362.Google Scholar
Lundberg, U., de Chateau, P., Winberg, J., & Frankenhaeuser, M. (1981). Catecholamine and cortisol excretion patterns in three-year-old children and their parents. Journal of Human Stress, 7, 311.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
Lyons, D. M., & Parker, K. J. (2007). Stress inoculation-induced indications of resilience in monkeys. Journal of Traumatic Stress, 20, 423433.Google Scholar
Masten, A. S. (2011). Resilience in children threatened by extreme adversity: Frameworks for research, practice, and translational synergy. Development and Psychopathology, 23, 141–54.Google Scholar
Masten, A. S., & Narayan, A. J. (2012). Child development in the context of disaster, war, and terrorism: Pathways of risk and resilience. Annual Review of Psychology, 63, 227257.Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344.CrossRefGoogle ScholarPubMed
McEwen, B. S., Angulo, J., Cameron, H., Chao, H. M., Daniels, D., Gannon, M. N., et al. (1992). Paradoxical effects of adrenal steroids on the brain: Protection versus degeneration. Biological Psychiatry, 31, 177199.Google Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.Google Scholar
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.CrossRefGoogle ScholarPubMed
Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S., & Sapolsky, R. M. (1988). Effect of neonatal handling on age-related impairments associated with the hippocampus. Science, 239, 766–68.Google Scholar
Meaney, M. J., Mitchell, J. B., Aitken, D. H., Bhatnagar, S., Bodnoff, S. R., Iny, L. J., et al. (1991). The effects of neonatal handling on the development of the adrenocortical response to stress: Implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology, 16, 85103.Google Scholar
Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neurosciences, 28, 456463.Google Scholar
Michel, G. F., & Moore, C. L. (1995). Developmental psychobiology: An interdisciplinary science. Cambridge, MA: MIT Press.Google Scholar
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin, 137, 959997.Google Scholar
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychological Bulletin, 133, 2545.Google Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis–stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425.CrossRefGoogle ScholarPubMed
Moriceau, S., & Sullivan, R. M. (2006). Maternal presence serves to switch between attraction and fear in infancy. Nature Neuroscience, 9, 10041006.Google Scholar
Natsuaki, M. N., Klimes-Dougan, B., Ge, X., Shirtcliff, E. A., Hastings, P. D., & Zahn-Waxler, C. (2009). Early pubertal maturation and internalizing problems in adolescence: Sex differences in the role of cortisol reactivity to interpersonal stress. Journal of Clinical Child & Adolescent Psychology, 38, 513–24.Google Scholar
Nemeroff, C. B. (1996). The corticotropin-releasing factor (CRF) hypothesis of depression: New findings and new directions. Molecular Psychiatry, 1, 336342.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106.Google Scholar
Ozer, E. J., Best, S. R., Lipsey, T. L., & Weiss, D. S. (2003). Predictors of posttraumatic stress disorder and symptoms in adults: A meta-analysis. Psychological Bulletin, 129, 5273.Google Scholar
Panksepp, J., Nelson, E., & Siviy, S. (1994). Brain opioids and mother–infant social interaction. Acta Paediatrica, 83, 4046.Google Scholar
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31, 464468.Google Scholar
Plotsky, P. M., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress- induced release in adult rats. Molecular Brain Research, 18, 195200.Google Scholar
Puig-Antich, J., Dahl, R., Ryan, N., Novacenko, H., Goetz, D., Goetz, R., et al. (1989). Cortisol secretion in prepubertal children with major depressive disorder: Episode and recovery. Archives of General Psychiatry, 41, 455460.Google Scholar
Rende, R., & Plomin, R. (1992). Diathesis–stress models of psychopathology: A quantitative genetic perspective. Applied and Preventive Psychology, 1, 177182.Google Scholar
Reul, J. M. H. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 25052511.Google Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.Google Scholar
Russell, E., Koren, G., Rieder, M., & Van Uum, S. (2012). Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology, 37, 589601.Google Scholar
Rutter, M. (1991). Childhood experiences and adult psychosocial functioning. In Rutter, M. (Ed.), CIBA Foundation Symposium: Vol. 156. The childhood environment and adult disease (pp. 189208). Chichester: Wiley.Google Scholar
Sánchez, M. M., Noble, P. M., Lyon, C. K., Plotsky, P. M., Davis, M., Nemeroff, C. B., et al. (2005). Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biological Psychiatry, 57, 373381.Google Scholar
Sandman, C. A., Davis, E. P., Buss, C., & Glynn, L. M. (2011). Prenatal programming of human neurological function. International Journal of Peptides, 2011, Article ID 837596.Google Scholar
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging. Journal of Neuroscience, 5, 12221227.Google Scholar
Schneider, M. L., Coe, C. L., & Lubach, G. R. (1992). Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Developmental Psychobiology, 25, 427439.CrossRefGoogle ScholarPubMed
Schwartz, E. B., Granger, D. A., Susman, E. J., Gunnar, M. R., & Laird, B. (1998). Assessing salivary cortisol in studies of child development. Child Development, 69, 15031513.Google Scholar
Segman, R. H., Shefi, N., Goltser-Dubner, T., Friedman, N., Kaminski, N., & Shalev, A. Y. (2005). Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Molecular Psychiatry, 10, 500513.Google Scholar
Seltzer, L. J., Prososki, A. R., Ziegler, T. E., & Pollak, S. D. (2012). Instant messages vs. speech: Hormones and why we still need to hear each other. Evolution and Human Behavior, 33, 4245.Google Scholar
Shenk, C. E., Noll, J. G., Putnam, F. W., & Trickett, P. K. (2010). A prospective examination of the role of childhood sexual abuse and physiological asymmetry in the development of psychopathology. Child Abuse & Neglect, 34, 752761.Google Scholar
Slatcher, R. B., & Robles, T. F. (2012). Preschoolers' everyday conflict at home and diurnal cortisol patterns. Health Psychology, 31, 834838.Google Scholar
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24, 417463.Google Scholar
Stalder, T., Bäumler, D., Miller, R., Alexander, N., Kliegel, M., & Kirschbaum, C. (in press). The cortisol awakening response in infants: Ontogeny and associations with development-related variables. Psychoneuroendocrinology.Google Scholar
Szyf, M., McGowan, P., & Meaney, M. J. (2008). The social environment and the epigenome. Environmental and Molecular Mutagenesis, 49, 4660.Google Scholar
Tasker, J. G., & Herman, J. P. (2011). Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic-pituitary-adrenal axis. Stress, 14, 398406.Google Scholar
Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., & Putnam, F. W. (2010). Attenuation of cortisol across development for victims of sexual abuse. Development and Psychopathology, 22, 165175.Google Scholar
Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10, 397409.Google Scholar
Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213, 13941397.Google Scholar
Van Ryzin, M. J., Chatham, M., Kryzer, E., Kertes, D. A., & Gunnar, M. R. (2009). Identifying atypical cortisol patterns in young children: The benefits of group-based trajectory modeling. Psychoneuroendocrinology, 34, 5061.Google Scholar
Wasserman, D., Wasserman, J., Rozanov, V., & Sokolowski, M. (2009). Depression in suicidal males: Genetic risk variants in the CRHR1 gene. Genes, Brain and Behavior, 8, 72–9.CrossRefGoogle ScholarPubMed
Yehuda, R., Cai, G., Golier, J. A., Sarapas, C., Galea, S., Ising, M., et al. (2009). Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biological Psychiatry, 66, 708711.Google Scholar