Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T08:26:54.211Z Has data issue: false hasContentIssue false

Social network isolation mediates associations between risky symptoms and substance use in the high school transition

Published online by Cambridge University Press:  24 June 2019

Andrea M. Hussong*
Affiliation:
Center for Developmental Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Susan T. Ennett
Affiliation:
Department of Health Behavior, the Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
Daniel M. McNeish
Affiliation:
Department of Psychology, Arizona State University, Tempe, AZ, USA
Veronica T. Cole
Affiliation:
Center for Developmental Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Nisha C. Gottfredson
Affiliation:
Department of Health Behavior, the Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
W. Andrew Rothenberg
Affiliation:
Center for Child and Family Policy, Duke University, Durham, NC, USA
Robert W. Faris
Affiliation:
Department of Sociology, University of California at Davis, Davis, CA, USA
*
Author for Correspondence: Andrea M. Hussong, Center for Developmental Science, 101 E. Franklin Street, Suite 200, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-8115; E-mail: [email protected].

Abstract

The current study examined whether social status and social integration, two related but distinct indicators of an adolescent's standing within a peer network, mediate the association between risky symptoms (depressive symptoms and deviant behavior) and substance use across adolescence. The sample of 6,776 adolescents participated in up to seven waves of data collection spanning 6th to 12th grades. Scores indexing social status and integration were derived from a social network analysis of six schools and subsequent psychometric modeling. Results of latent growth models showed that social integration and status mediated the relation between risky symptoms and substance use and that risky symptoms mediated the relation between social standing and substance use during the high school transition. Before this transition, pathways involving deviant behavior led to high social integration and status and in turn to substance use. After this transition, both deviant behavior and depressive symptoms led to low social integration and status and in turn greater substance use. These findings suggest that the high school transition is a risky time for substance use related to the interplay of increases in depressive symptoms and deviant behavior on the one hand and decreases in social status and integration on the other.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angold, A., Costello, E. J., Messer, S. C., & Pickles, A. (1995). Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. International Journal of Methods in Psychiatric Research, 5, 237249.Google Scholar
Bauer, D. J., & Hussong, A. M. (2009). Psychometric approaches for developing commensurate measures across independent studies: Traditional and new models. Psychological Methods, 14, 101125. doi:10.1037/a0015583CrossRefGoogle ScholarPubMed
Berkman, L. F., Glass, T., Brissette, I., & Seeman, T. E. (2000). From social integration to health: Durkheim in the new millennium. Social Science and Medicine, 51, 843857.CrossRefGoogle ScholarPubMed
Blyth, D. A., Hill, J. P., & Thiel, K. S. (1982). Early adolescents' significant others: Grade and gender differences in perceived relationships with familial and nonfamilial adults and young people. Journal of Youth and Adolescence, 11, 425450. doi:10.1007/BF01538805CrossRefGoogle ScholarPubMed
Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). UCINET for Windows: Software for social network analysis (Cersion 6). Cambridge, MA: Analytic Technologie.Google Scholar
Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892895.CrossRefGoogle ScholarPubMed
Brechwald, W. A., & Prinstein, M. J. (2013). Beyond homophily: A decade of understanding peer influence processes. Journal of Research on Adolescence, 21, 166179. doi:10.1111/j.1532-7795.2010.00721.xCrossRefGoogle Scholar
Brown, B. B. (1990). Peer groups and peer cultures. In Shirley Feldman, G. R. E. S. (Ed.), At the threshold: The developing adolescent (pp. 171196). Cambridge, MA: Harvard University Press.Google Scholar
Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders: Longitudinal evidence from a birth cohort. Archives of General Psychiatry, 53, 10331039.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. (2010). Deaths, percent of total deaths, and death rates for the 15 leading causes of death in selected age groups, by race and sex: United States, 1999–2009. Atlanta, GA: Author.Google Scholar
Chassin, L., Sher, K. A., Colder, C. R., & Hussong, A. M. (2016). Substance use and substance use disorder. In Cicchetti, D. (Ed.), Developmental psychopathology: Vol. 3. Maladaptation and psychopathology (pp. 833897). Hoboken, NJ: Wiley.Google Scholar
Cheadle, J. E., & Goosby, B. J. (2012). The small-school friendship dynamics of adolescent depressive symptoms. Society and Mental Health, 2, 99119. doi:10.1177/2156869312445211CrossRefGoogle ScholarPubMed
Coie, J., Terry, R., Lenox, K., Lochman, J., & Hyman, C. (1995). Childhood peer rejection and aggression as predictors of stable patterns of adolescent disorder. Development and Psychopathology, 7, 697713.CrossRefGoogle Scholar
Colder, C. R., Chassin, L., Lee, M. R., & Villalta, I. K. (2010). Developmental perspectives: Affect and adolescent substance use. In Kassel, J. D. (Ed.), Substance abuse and emotion (pp. 109135). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Cole, V. T., Gottfredson, N. C., Giordano, M. L., & Janssen, T. (2018). aMNLFA: Automated Fitting of Moderated Nonlinear Factor Analysis Through the “Mplus” Program. R package version 0.1. Vienna, Austria. https://cran.r-project.org/web/packages/aMNLFA/index.htmlGoogle Scholar
Cole, V. T., Hussong, A. M., Faris, R., Rothenberg, W. A., Gottfredson, N. C., & Ennett, S. (in press). A latent variable approach to modeling social dynamics in adolescence. Journal of Research on Adolescence.Google Scholar
Curran, P. J., Cole, V., Bauer, D. J., Hussong, A. M., & Gottfredson, N. (2016). Improving factor score estimation through the use of observed background characteristics. Structural Equation Modeling, 23, 827844. doi:10.1080/10705511.2016.1220839CrossRefGoogle ScholarPubMed
Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82, 879894. doi:10.1037/a0035297CrossRefGoogle ScholarPubMed
Demuth, S. (2004). Understanding the delinquency and social relationships of loners. Youth & Society, 35, 366392.CrossRefGoogle Scholar
DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11, 189212.Google Scholar
Dijkstra, J. K., Cillessen, A. H. N., & Borch, C. (2013). Popularity and adolescent friendship networks: Selection and influence dynamics. Developmental Psychology, 49, 12421252. doi:10.1037/a0030098CrossRefGoogle ScholarPubMed
Dishion, T. J., & Tipsord, J. M. (2011). Peer contagion in child and adolescent social and emotional development. Annual Review of Psychology, 62, 189214. doi:10.1146/annurev.psych.093008.100412CrossRefGoogle ScholarPubMed
Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430457.CrossRefGoogle Scholar
Enders, C. K., & Peugh, J. L. (2004). Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural Equation Modeling, 11, 119. doi:10.1207/S15328007SEM1101_1CrossRefGoogle Scholar
Ennett, S. T., & Bauman, K. E. (1996). Adolescent social networks: School, demographic and longitudinal considerations. Journal of Adolescent Research, 11, 194215. doi:10.1177/0743554896112003CrossRefGoogle Scholar
Ennett, S. T., & Bauman, K. E. (1993). Peer group structure and adolescent cigarette smoking: A social network analysis. Journal of Health & Social Behavior, 34, 226236. doi:10.2307/2137204CrossRefGoogle ScholarPubMed
Ennett, S. T., Bauman, K. E., Hussong, A. M., Faris, R., Foshee, V. A., Cai, L., & DuRant, R. H. (2006). The peer context of adolescent substance use: Findings from social network analysis. Journal of Research on Adolescence, 16, 159186. doi:10.1111/j.1532-7795.2006.00127.xCrossRefGoogle Scholar
Ennett, S. T., Faris, R., Hipp, J., Foshee, V. A., Bauman, K. E., Hussong, A., & Cai, L. (2008). Peer smoking, other peer attributes, and adolescent cigarette smoking: A social network analysis. Prevention Science, 9, 8898. doi:10.1007/s11121-008-0087-8CrossRefGoogle ScholarPubMed
Falci, C., & McNeely, C. (2009). Too many friends: Social integration, network cohesion and adolescent depressive symptoms. Social Forces, 87, 20312061. doi:10.1353/sof.0.0189CrossRefGoogle Scholar
Faris, R. (2012). Aggression, exclusivity, and status attainment in interpersonal networks. Social Forces, 90, 12071235.CrossRefGoogle Scholar
Faris, R., & Felmlee, D. (2011). Status struggles: Network centrality and gender segregation in same- and cross-gender aggression. American Sociological Review, 76, 4873.CrossRefGoogle Scholar
Farrell, A. D., Kung, E. M., White, K. S., & Valois, R. F. (2000). The structure of self-reported aggression, drug use, and delinquent behaviors during early adolescence. Journal of Clinical Child Psychology, 29, 282292. doi:10.1207/S15374424jccp2902_13CrossRefGoogle ScholarPubMed
Forster, M., Grigsby, T. J., Bunyan, A., Unger, J. B., & Valente, T. W. (2015). The protective role of school friendship ties for substance use and aggressive behaviors among middle school students. Journal of School Health, 85, 8289. doi:10.1111/josh.12230CrossRefGoogle ScholarPubMed
Franken, A., Harakeh, A., Veenstra, R., Vollebergh, W., & Dijkstra, J. (2017). Social status of adolescents with an early onset of externalizing behavior: The SNARE study. Journal of Early Adolescence, 37, 10371053.CrossRefGoogle Scholar
Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18, 233239. doi:10.1111/j.1467-9280.2007.01882.xCrossRefGoogle ScholarPubMed
Gottfredson, N. C., & Hussong, A. M. (2011). Parental involvement protects against self-medication behaviors during the high school transition. Addictive Behaviors, 36, 12461252. doi:10.1016/j.addbeh.2011.07.035CrossRefGoogle ScholarPubMed
Haas, S. A., Schaefer, D. R., & Kornienko, O. (2010). Health and the structure of adolescent social networks. Journal of Health and Social Behavior, 51, 424439.CrossRefGoogle ScholarPubMed
Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom test for nicotine dependence: A revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86, 11191127. doi:10.1111/j.1360-0443.1991.tb01879.xCrossRefGoogle ScholarPubMed
Hussong, A. M. (2011). The contributions of developmental science to the study of substance use and disorder: Introduction. Child Development Perspectives, 5, 219222. doi:10.1111/j.1750-8606.2011.00193.xCrossRefGoogle Scholar
Hussong, A. M., Curran, P. J., & Chassin, L. (1998). Pathways of risk for accelerated heavy alcohol use among adolescent children of alcoholic parents. Journal of Abnormal Child Psychology, 26, 453466. doi:10.1023/A:1022699701996CrossRefGoogle ScholarPubMed
Hussong, A. M., Ennett, S. T., Cox, M. J., & Haroon, M. (2017). A systematic review of the unique prospective association of negative affect symptoms and adolescent substance use controlling for externalizing symptoms. Psychology of Addictive Behaviors, 31, 137147. doi:10.1037/adb0000247CrossRefGoogle ScholarPubMed
Hussong, A. M., Ennett, S. T., McNeish, D., Rothenberg, W. A., Cole, V., Gottfredson, N. C., & Faris, R. W. (in press). Teen social networks and depression-substance use associations: Developmental and demographic variation. Journal of Studies on Alcohol and Drug Use.Google Scholar
Hussong, A. M., & Hicks, R. E. (2003). Affect and peer context interactively impact adolescent substance use. Journal of Abnormal Child Psychology, 31, 413426. doi:10.1023/A:1023843618887CrossRefGoogle ScholarPubMed
Hussong, A. M., Jones, D. J., Stein, G. L., Baucom, D. H., & Boeding, S. (2011). An internalizing pathway to alcohol use and disorder. Psychology of Addictive Behaviors, 25, 390404. doi:10.1037/a0024519CrossRefGoogle ScholarPubMed
Hussong, A. M., Rothenberg, W. A., Smith, R. K., & Haroon, M. (in press). Implications of heterogeneity in alcohol use disorders for understanding developmental pathways and prevention programming. In Fitzgerald, H. E. & Puttler, L. I. (Eds.), Developmental perspectives on alcohol and other addictions over the life course. New York: Oxford University Press.Google Scholar
Ialongo, N. S., Rogosch, F. A., Cicchetti, D., Toth, S. L., Buckley, J., Petras, H., & Neiderhiser, J. (2006). A developmental psychopathology approach to the prevention of mental health disorders. In Cohen, D. J. (Ed.), Developmental psychopathology: Vol 1. Theory and method (2nd ed., pp. 9681018). Hoboken, NJ: Wiley.Google Scholar
Iacono, W. G., Malone, S. M., & McGue, M. (2008). Behavioral disinhibition and the development of early-onset addiction: Common and specific influences. Annual Review of Clinical Psychology, 4, 325348. doi:10.1146/annurev.clinpsy.4.022007.141157CrossRefGoogle ScholarPubMed
Jackson, K. M., & Schulenberg, J. E. (2013). Alcohol use during the transition from middle school to high school: National panel data on prevalence and moderators. Developmental Psychology, 49, 21472158. doi:10.1037/a0031843CrossRefGoogle ScholarPubMed
Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2006). Monitoring the Future national survey results on drug use, 1975–2005: Vol. 1. Secondary school students (NIH publication no. 06-5883). Bethesda, MD: National Institute on Drug Abuse.Google Scholar
Johnston, L. D., O'Malley, P. M., Bachman, J. G., Schulenberg, J. E., & Miech, R. A. (2014). Monitoring the Future national survey results on drug use, 1975–2013: Vol. 1. Secondary school students. Ann Arbor, MI: University of Michigan, Institute for Social Research.Google Scholar
Kassel, J. D., Hussong, A. M., Wardle, M. C., Veilleux, J. C., Heinz, A., Greenstein, J. E., & Evatt, D. P. (2010). Affective influences in drug use etiology. In Scheier, L. (Ed.), Handbook of drug use etiology: Theory, methods, and empirical findings (pp. 183205). Washington, DC: American Psychological Association.Google Scholar
Keenan, K., & Hipwell, A. E. (2005). Preadolescent clues to understanding depression in girls. Clinical Child and Family Psychology Review, 8, 89105. doi:10.1007/s10567-005-4750-3CrossRefGoogle ScholarPubMed
La Greca, A. M., & Harrison, H. M. (2005). Adolescent peer relations, friendships, and romantic relationships: Do they predict social anxiety and depression? Journal of Clinical Child and Adolescent Psychology, 34, 4961 doi:10.1207/s15374424jccp3401_5CrossRefGoogle ScholarPubMed
La Greca, A. M., & Lopez, N. (1998). Social anxiety among adolescents: Linkages with peer relations and friendships. Journal of Abnormal Child Psychology, 26, 8394. doi:10.1023/A:1022684520514CrossRefGoogle ScholarPubMed
Lansu, T. A. M., & Cillessen, A. H. N. (2015). Associations of group level popularity with observed behavior and influence in a dyadic context. Journal of Experimental Child Psychology, 140, 92104. doi:10.1016/j.jecp.2015.06.016CrossRefGoogle Scholar
Logis, H. A., Rodkin, P. C., Gest, S. D., & Ahn, H. J. (2013). Popularity as an organizing factor of preadolescent friendship networks: Beyond prosocial and aggressive behavior. Journal of Research on Adolescence, 23, 413423. doi:10.1111/jora.12033CrossRefGoogle Scholar
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99128. doi:10.1207/s15327906mbr3901_4CrossRefGoogle ScholarPubMed
Masten, A. S., Faden, V. B., Zucker, R. A., & Spear, L. P. (2008). Underage drinking: A developmental framework. Pediatrics, 121, S235S251. doi:10.1542/peds.2007-2243ACrossRefGoogle ScholarPubMed
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12, 2344. doi:10.1037/1082-989X.12.1.23CrossRefGoogle ScholarPubMed
Mayeux, L., Sandstrom, M. J., & Cillessen, A. (2008). Is being popular a risky proposition? Journal of Research on Adolescence, 18, 4974.CrossRefGoogle Scholar
McNeish, D., & Wentzel, K. R. (2017). Accommodating small sample sizes in three level models when the third level is incidental. Multivariate Behavioral Research, 52, 200215. doi:10.1080/00273171.2016.1262236CrossRefGoogle ScholarPubMed
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674.CrossRefGoogle ScholarPubMed
Moody, J. (2000). SPAN: SAS programs for analyzing networks. Retrieved from http://www.sociology.ohiostate.edu/jwm/soc_net_methods.htmGoogle Scholar
Moody, J. (2001). Peer influence groups: Identifying dense clusters in large networks. Social Networks, 23, 261283. doi:10.1016/S0378-8733(01)00042-9CrossRefGoogle Scholar
Newcomb, M. D. (1996). Pseudomaturity among adolescents: Construct validation, sex differences, and associations in adulthood. Journal of Drug Issues, 26, 477504. doi:10.1177/002204269602600209CrossRefGoogle Scholar
Niño, M., Ignatow, B., & Cai, T. (2017). Social isolation, strain, and youth violence. Youth Violence and Juvenile Justice, 15, 299313.CrossRefGoogle Scholar
Osgood, D. W., Feinberg, M. E., Wallace, L. N., & Moody, J. (2014). Friendship group position and substance use. Addictive Behaviors, 39, 923933. doi:10.1016/j.addbeh.2013.12.009CrossRefGoogle ScholarPubMed
Osgood, D. W., Ragan, D. T., Wallace, L., Gest, S. D., Feinberg, M. E., & Moody, J. (2013). Peers and the emergence of alcohol use: Influence and selection processes in adolescent friendship networks. Journal of Research on Adolescence, 23, 500512.CrossRefGoogle ScholarPubMed
Pesola, F., Shelton, K. H., Heron, J., Munafo, M., Maughan, B., Hickman, M., & van den Bree, M. (2015). The mediating role of deviant peers in the link between depressed mood and harmful drinking. Journal of Adolescent Health, 56, 153155. doi:10.1016/j.jadohealth.2014.10.268CrossRefGoogle ScholarPubMed
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6, 7798. doi:10.1080/19312458.2012.679848CrossRefGoogle Scholar
Prinstein, M. J., & Giletta, M. (2016). Peer relations and developmental psychopathology. In Cicchetti, D. (Ed.), Developmental psychopathology (3rd ed., Vol. 1, pp. 527579). Hoboken, NJ: Wiley.Google Scholar
Rulison, K. L., Kreager, A. D., & Osgood, D. W. (2014). Delinquency and peer acceptance in adolescence: A within-person test of Moffitt's hypotheses. Developmental Psychology, 50, 2437.CrossRefGoogle ScholarPubMed
Schaefer, D. R., Kornienko, O., & Fox, A. M. (2011). Misery does not love company: Network selection mechanisms and depression homophily. American Sociological Review, 76, 764785. doi:10.1177/0003122411420813CrossRefGoogle Scholar
Sher, K. J., Walitzer, K. S., Wood, P. K., & Brent, E. E.(1991).Characteristics of children of alcoholics: Putative risk factors, substance use and abuse, and psychopathology. Journal of Abnormal Psychology, 100, 427448.CrossRefGoogle Scholar
Sijtsema, J. J., Lindenberg, S. M., & Veenstra, R. (2010). Do they get what they want or are they stuck with what they can get? Testing homophily against default selection for friendships of highly aggressive boys. The Trails study. Journal of Abnormal Child Psychology, 38, 803813. doi:10.1007/s10802-010-9402-5CrossRefGoogle ScholarPubMed
Stein, G. L., & Hussong, A. M. (2007). Social and academic expectations about high school for at-risk rural youth. American Secondary Education, 36, 5979.Google Scholar
Stoltz, S., Cillessen, A., van den Berg, H., & Gommans, R. (2016). Popularity differentially predicts reactive and proactive aggression in early adolescence. Aggressive Behavior, 42, 2940.CrossRefGoogle ScholarPubMed
Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. Monographs of the Society for Research in Child Development, 59, 2552. doi:10.1111/j.1540-5834.1994.tb01276.xCrossRefGoogle ScholarPubMed
Ueno, K. (2005). The effects of friendship networks on adolescent depressive symptoms. Social Science Research, 34, 484510. doi:10.1016/j.ssresearch.2004.03.002CrossRefGoogle Scholar
Van Zalk, M. H. W., Kerr, M., Branje, S. J. T., Stattin, H., & Meeus, W. H. J. (2010). It takes three: Selection, influence, and de-selection processes of depression in adolescent friendship networks. Developmental Psychology, 46, 927938. doi:10.1037/a0019661CrossRefGoogle ScholarPubMed
Van Zalk, N., Van Zalk, M., Kerr, M., & Stattin, H. (2011). Social anxiety as a basis for friendship selection and socialization in adolescents' social networks. Journal of Personality, 79, 499525. doi:10.1111/j.1467-6494.2011.00682.xCrossRefGoogle ScholarPubMed
Walker, M. E., Wasserman, S., & Wellman, B. (1993). Statistical models for social support networks. Sociological Methods and Research, 22, 7198.CrossRefGoogle Scholar
Williams, J., & MacKinnon, D. P. (2008). Resampling and distribution of the product methods for testing indirect effects in complex models. Structural Equation Modeling, 15, 2351. doi:10.1080/10705510701758166CrossRefGoogle ScholarPubMed
Zahn-Waxler, C., Klimes-Dougan, B., & Slattery, M. J. (2000). Internalizing problems of childhood and adolescence: Prospects, pitfalls, and progress in understanding the development of anxiety and depression. Development and Psychopathology, 12, 443466. doi:10.1017/S0954579400003102CrossRefGoogle ScholarPubMed
Zucker, R. A. (2006). Alcohol use and the alcohol use disorders: A developmental-biopsychosocial systems formulation covering the life course. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Vol. 3. Risk, disorder, and adaptation (2nd ed., pp. 620656). Hoboken, NJ: Wiley.Google Scholar
Zucker, R. A., Chermack, S. T., & Curran, G. M. (2000). Alcoholism: A life span perspective on etiology and course. In Sameroff, A., Lewis, M., & Miller, S. (Eds.), Handbook of developmental psychopathology (2nd ed., pp. 569587). New York: Plenum Press.CrossRefGoogle Scholar
Zucker, R. A., Donovan, J. E., Masten, A. S., Mattson, M. E., & Moss, H. B. (2008). Early developmental processes and the continuity of risk for underage drinking and problem drinking. Pediatrics, 121, S252S272. doi:10.1542/peds.2007-2243BCrossRefGoogle ScholarPubMed
Zucker, R. A., Heitzeg, M. M., & Nigg, J. T. (2011). Parsing the undercontrol–disinhibition pathway to substance use disorders: A multilevel developmental problem. Child Development Perspectives, 5, 248255. doi:10.1111/j.1750-8606.2011.00172.xCrossRefGoogle ScholarPubMed
Supplementary material: File

Hussong et al. supplementary material

Hussong et al. supplementary material 1

Download Hussong et al. supplementary material(File)
File 217.9 KB