Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T00:51:56.615Z Has data issue: false hasContentIssue false

Prenatal stress and models explaining risk for psychopathology revisited: Generic vulnerability and divergent pathways

Published online by Cambridge University Press:  02 August 2018

Anja C. Huizink*
Affiliation:
Vrije Universiteit Amsterdam
Susanne R. de Rooij
Affiliation:
Vrije Universiteit Amsterdam
*
Address correspondence and reprint requests to: Anja C. Huizink, Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, the Netherlands; E-mail: [email protected].

Abstract

The present review revisits three hypothesized models that potentially could explain how prenatal maternal stress influences fetal development, birth outcomes, and subsequent developmental psychopathology. These models were mostly based on animal models, and new evidence for these models from human studies is evaluated. Furthermore, divergent trajectories from prenatal exposure to adversities to offspring affected outcomes are reviewed, including the comparison of studies on prenatal maternal stress with research on maternal substance use and maternal malnutrition during pregnancy. Finally, new directions in research on the mechanism underlying prenatal stress effects on human offspring is summarized. While it is concluded that there is abundant evidence for the negative associations between prenatal maternal stress and offspring behavioral, brain, and psychopathological outcomes in humans, there is no consistent evidence for specific mechanisms or specific outcomes in relation to stress exposure in utero. Rather, principles of multifinality and equifinality best describe the consequences for the offspring, suggesting a generic vulnerability and different pathways from prenatal adversities to developmental psychopathology, which complicates the search for underlying mechanisms. New and promising directions for research are provided to get a better understanding of how prenatal stress gets under the skin to affect fetal development.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aardema, M. W., Saro, M. C., Lander, M., de Wolf, B. T., Oosterhof, H., & Aarnoudse, J. G. (2004). Second trimester Doppler ultrasound screening of the uterine arteries differentiates between subsequent normal and poor outcomes of hypertensive pregnancy: Two different pathophysiological entities? Clinical Science (London), 106, 377382. doi:10.1042/CS20030385.Google Scholar
Ahima, R. S., Prabakaran, D., & Flier, J. S. (1998). Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding: Implications for energy homeostasis and neuroendocrine function. Journal of Clinical Investigation, 101, 10201027. doi:10.1172/jci1176.Google Scholar
Ahmed-Leitao, F., Spies, G., van den Heuvel, L., & Seedat, S. (2016). Hippocampal and amygdala volumes in adults with posttraumatic stress disorder secondary to childhood abuse or maltreatment: A systematic review. Psychiatry Research, 256, 3343. doi:10.1016/j.pscychresns.2016.09.008.Google Scholar
Alderdice, F., Lynn, F., & Lobel, M. (2012). A review and psychometric evaluation of pregnancy-specific stress measures. Journal of Psychosomatic Obstetrics and Gynecology, 33, 6277. doi:10.3109/0167482X.2012.673040.Google Scholar
Alikhani-Koopaei, R., Fouladkou, F., Frey, F. J., & Frey, B. M. (2004). Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. Journal of Clinical Investigation, 114, 11461157. doi:10.1172/JCI21647.Google Scholar
Alonso, S. J., Navarro, E., & Rodriguez, M. (1994). Permanent dopaminergic alterations in the n. accumbens after prenatal stress. Pharmacology, Biochemistry, and Behavior, 49, 353358.Google Scholar
Appleton, A. A., Lester, B. M., Armstrong, D. A., Lesseur, C., & Marsit, C. J. (2015). Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehavior. Psychoneuroendocrinology, 52, 3242. doi:10.1016/j.psyneuen.2014.11.004.Google Scholar
Arnsten, A. F. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410422. doi:10.1038/nrn2648.Google Scholar
Bada, H. S., Bann, C. M., Whitaker, T. M., Bauer, C. R., Shankaran, S., Lagasse, L., … Higgins, R. (2012). Protective factors can mitigate behavior problems after prenatal cocaine and other drug exposures. Pediatrics, 130, e1479e1488. doi:10.1542/peds.2011-3306.Google Scholar
Baibazarova, E., van de Beek, C., Cohen-Kettenis, P. T., Buitelaar, J., Shelton, K. H., & van Goozen, S. H. (2013). Influence of prenatal maternal stress, maternal plasma cortisol and cortisol in the amniotic fluid on birth outcomes and child temperament at 3 months. Psychoneuroendocrinology, 38, 907915. doi:10.1016/j.psyneuen.2012.09.015.Google Scholar
Baier, C. J., Katunar, M. R., Adrover, E., Pallarés, M. E., & Antonelli, M. C. (2012). Gestational restraint stress and the developing dopaminergic system: An overview. Neurotoxicity Research, 22, 1632. doi:10.1007/s12640-011-9305-4.Google Scholar
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2, 303312. doi:10.1093/scan/nsm029.Google Scholar
Barker, D. J., Eriksson, J. G., Forsén, T., & Osmond, C. (2002). Fetal origins of adult disease: Strength of effects and biological basis. International Journal of Epidemiology, 31, 12351239.Google Scholar
Barlow, S. M., Knight, A. F., & Sullivan, F. M. (1978). Delay in postnatal growth and development of offspring produced by maternal restraint stress during pregnancy in the rat. Teratology, 18, 211218. doi:10.1002/tera.1420180206.Google Scholar
Bartha, J. L., Comino-Delgado, R., Gonzalez-Mena, C., Lopez, I., & Arrabal, J. (1998). Umbilical blood flow and neonatal morphometry: A multivariate analysis. European Journal of Obstetrics, Gynecology and Reproductive Biology, 79, 2733.Google Scholar
Baser, I., Johnson, T. R., & Paine, L. L. (1992). Coupling of fetal movement and fetal heart rate accelerations as an indicator of fetal health. Obstetrics and Gynecology, 80, 6266.Google Scholar
Beijers, R., Jansen, J., Riksen-Walraven, M., & de Weerth, C. (2010). Maternal prenatal anxiety and stress predict infant illnesses and health complaints. Pediatrics, 126, E401E409. doi:10.1542/peds.2009-3226.Google Scholar
Bergman, K., Glover, V., Sarkar, P., Abbott, D. H., & O'Connor, T. G. (2010). In utero cortisol and testosterone exposure and fear reactivity in infancy. Hormones and Behavior, 57, 306312. doi:10.1016/j.yhbeh.2009.12.012.Google Scholar
Bergman, K., Sarkar, P., Glover, V., & O'Connor, T. G. (2008). Quality of child-parent attachment moderates the impact of antenatal stress on child fearfulness. Journal of Child Psychology and Psychiatry, 49, 10891098. doi:10.1111/j.1469-7610.2008.01987.x.Google Scholar
Betts, K., Williams, G., Najman, J., & Alati, R. (2015). The relationship between maternal depressive, anxious, and stress symptoms during pregnancy and adult offspring behavioral and emotional problems. Depression and Anxiety, 32, 8290. doi:10.1002/da.22272.Google Scholar
Black, M. M., Perez-Escamilla, R., & Rao, S. F. (2015). Integrating nutrition and child development interventions: Scientific basis, evidence of impact, and implementation considerations. Advances in Nutrition, 6, 852859. doi:10.3945/an.115.010348.Google Scholar
Bleker, L. S., Roseboom, T. J., Vrijkotte, T. G., Reynolds, R. M., & de Rooij, S. R. (2017). Determinants of cortisol during pregnancy—The ABCD Cohort. Psychoneuroendocrinology. doi:10.1016/j.psyneuen.2017.05.026.Google Scholar
Bolten, M. I., Wurmser, H., Buske-Kirschbaum, A., Papoušek, M., Pirke, K. M., & Hellhammer, D. (2011). Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Archives of Womens Mental Health, 14, 3341. doi:10.1007/s00737-010-0183-1.Google Scholar
Bouret, S. G., & Simerly, R. B. (2006). Developmental programming of hypothalamic feeding circuits. Clinical Genetics, 70, 295301. doi:10.1111/j.1399-0004.2006.00684.x.Google Scholar
Briffa, J. F., McAinch, A. J., Romano, T., Wlodek, M. E., & Hryciw, D. H. (2015). Leptin in pregnancy and development: A contributor to adulthood disease? American Journal of Physiology, Endocrinology and Metabolism, 308, E335E350. doi:10.1152/ajpendo.00312.2014.Google Scholar
Buss, C., Davis, E. P., Hobel, C. J., & Sandman, C. A. (2011). Maternal pregnancy-specific anxiety is associated with child executive function at 6-9 years age. Stress, 14, 665676. doi:10.3109/10253890.2011.623250.Google Scholar
Buss, C., Davis, E. P., Muftuler, L. T., Head, K., & Sandman, C. A. (2010). High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6- to 9-year-old children. Psychoneuroendocrinology, 35, 141153. doi:10.1016/j.psyneuen.2009.07.010.Google Scholar
Buss, C., Davis, E. P., Shahbaba, B., Pruessner, J. C., Head, K., & Sandman, C. A. (2012). Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences of the United States of America, 109, E1312E1319. doi:10.1073/pnas.1201295109.Google Scholar
Bussieres, E., Tarabulsy, G., Pearson, J., Tessier, R., Forest, J., & Giguere, Y. (2015). Maternal prenatal stress and infant birth weight and gestational age: A meta-analysis of prospective studies. Developmental Review, 36, 179199. doi:10.1016/j.dr.2015.04.001.Google Scholar
Calcia, M. A., Bonsall, D. R., Bloomfield, P. S., Selvaraj, S., Barichello, T., & Howes, O. D. (2016). Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berlin), 233, 16371650. doi:10.1007/s00213-016-4218-9.Google Scholar
Cao-Lei, L., Dancause, K. N., Elgbeili, G., Massart, R., Szyf, M., Liu, A., … King, S. (2015). DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13½ years: Project Ice Storm. Epigenetics, 10, 749761. doi:10.1080/15592294.2015.1063771.Google Scholar
Cao-Lei, L., de Rooij, S. R., King, S., Matthews, S. G., Metz, G. A. S., Roseboom, T. J., & Szyf, M. (in press). Prenatal stress and epigenetics. Neuroscience and Biobehavioral Reviews. doi:10.1016/j.neubiorev.2017.05.016.Google Scholar
Carpenter, T., Grecian, S. M., & Reynolds, R. M. (2017). Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans suggest increased vulnerability in females: A systematic review. Journal of Developmental Origins of Health and Disease, 8, 244255. doi:10.1017/S204017441600074X.Google Scholar
Chamberlain, C., O'Mara-Eves, A., Oliver, S., Caird, J. R., Perlen, S. M., Eades, S. J., & Thomas, J. (2013). Psychosocial intervention for supporting to stop smoking in pregnancy. Cochrane Database Systematic Reviews 10, CD001055. doi:10.1002/14651858.CD001055.pub4.Google Scholar
Chaouloff, F., Berton, O., & Mormède, P. (1999). Serotonin and stress. Neuropsychopharmacology, 21(2 Suppl.), 28S32S. doi: 10.1016/S0893-133X(99)00008-1.Google Scholar
Chapman, K., Holmes, M., & Seckl, J. (2013). 11β-hydroxysteroid dehydrogenases: Intracellular gate-keepers of tissue glucocorticoid action. Physiological Reviews, 93, 11391206. doi:10.1152/physrev.00020.2012.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600.Google Scholar
Class, Q. A., Abel, K. M., Khashan, A. S., Rickert, M. E., Dalman, C., Larsson, H., … D'Onofrio, B. M. (2014). Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychological Medicine, 44, 7184. doi:10.1017/S0033291713000780.Google Scholar
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385396. doi:10.2307/2136404.Google Scholar
Costello, E. J., Worthman, C., Erkanli, A., & Angold, A. (2007). Prediction from low birth weight to female adolescent depression: A test of competing hypotheses. Archives of General Psychiatry, 64, 338344. doi:10.1001/archpsyc.64.3.338.Google Scholar
Cottrell, E. C., Holmes, M. C., Livingstone, D. E., Kenyon, C. J., & Seckl, J. R. (2012). Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. FASEB Journal, 26, 18661874. doi:10.1096/fj.12-203489.Google Scholar
D'Angiulli, A., & Sullivan, R. (2010). Early specialized foster care, developmental outcomes and home salivary cortisol patterns in prenatally substance-exposed infants. Children and Youth Services Review, 32, 460465. doi:10.1016/j.childyouth.2009.10.007.Google Scholar
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 737746. doi:10.1097/chi.0b013e318047b775.Google Scholar
Davis, E. P., & Sandman, C. A. (2010). The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development, 81, 131148. doi:10.1111/j.1467-8624.2009.01385.x.Google Scholar
Davis, E. P., Townsend, E. L., Gunnar, M. R., Guiang, S. F., Lussky, R. C., Cifuentes, R. F., & Georgieff, M. K. (2006). Antenatal betamethasone treatment has a persisting influence on infant HPA axis regulation. Journal of Perinatology, 26, 147153. doi:10.1038/sj.jp.7211447.Google Scholar
Davis, E. P., Waffarn, F., & Sandman, C. A. (2011). Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants. Developmental Psychobiology, 53, 175183. doi:10.1002/dev.20510.Google Scholar
Davis, K., Goodman, S. H., Leiferman, J., Taylor, M., & Dimidjian, S. (2015). A randomized controlled trial of yoga for pregnant women with symptoms of depression and anxiety. Complementary Therapies in Clinical Practice, 21, 166172. doi:10.1016/j.ctcp.2015.06.005.Google Scholar
Day, J. C., Koehl, M., Deroche, V., Le Moal, M., & Maccari, S. (1998). Prenatal stress enhances stress- and corticotropin-releasing factor-induced stimulation of hippocampal acetylcholine release in adult rats. Journal of Neuroscience, 18, 18861892.Google Scholar
DeLong, G. R. (1992). Autism, amnesia, hippocampus, and learning. Neuroscience and Biobehavioral Reviews, 16, 6370.Google Scholar
Devlin, A. M., Brain, U., Austin, J., & Oberlander, T. F. (2010). Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLOS ONE, 5, e12201. doi:10.1371/journal.pone.0012201.Google Scholar
de Weerth, C., Buitelaar, J. K., & Beijers, R. (2013). Infant cortisol and behavioral habituation to weekly maternal separations: Links with maternal prenatal cortisol and psychosocial stress. Psychoneuroendocrinology, 38, 28632874. doi:10.1016/j.psyneuen.2013.07.014.Google Scholar
Ding, X. X., Wu, Y. L., Xu, S. J., Zhu, R. P., Jia, X. M., Zhang, S. F., … Tao, F. B. (2014). Maternal anxiety during pregnancy and adverse birth outcomes: A systematic review and meta-analysis of prospective cohort studies. Journal of Affective Disordors, 159, 103110. doi:10.1016/j.jad.2014.02.027.Google Scholar
DiPietro, J., Costigan, K., & Gurewitsch, E. (2003). Fetal response to induced maternal stress. Early Human Development, 74, 125138. doi:10.1016/j.earlhumdev.2003.07.001.Google Scholar
DiPietro, J., Ghera, M., Costigan, K., & Hawkins, M. (2004). Measuring the ups and downs of pregnancy stress. Journal of Psychosomatic Obstetrics and Gynecology, 25, 189201. doi:10.1080/01674820400017830.Google Scholar
DiPietro, J. A. (2005). Neurobehavioral assessment before birth. Mental Retardation and Developmental Disabilities Research Reviews, 11, 413. doi:10.1002/mrdd.20047.Google Scholar
DiPietro, J. A., Kivlighan, K. T., Costigan, K. A., Rubin, S. E., Shiffler, D. E., Henderson, J. L., & Pillion, J. P. (2010). Prenatal antecedents of newborn neurological maturation. Child Development, 81, 115130. doi:10.1111/j.1467-8624.2009.01384.x.Google Scholar
Doyle, C., Werner, E., Feng, T., Lee, S., Altemus, M., Isler, J. R., & Monk, C. (2015). Pregnancy distress gets under fetal skin: Maternal ambulatory assessment and sex differences in prenatal development. Developmental Psychobiology, 57, 607625. doi:10.1002/dev.21317.Google Scholar
Duvekot, J. J., & Peeters, L. L. (1994). Maternal cardiovascular hemodynamic adaptation to pregnancy. Obstetrical and Gynecological Survey, 49(12, Suppl.), S1S14.Google Scholar
Eiden, R., Molnar, D., Granger, D., Colder, C., Schuetze, P., & Huestis, M. (2015). Prenatal tobacco exposure and infant stress reactivity: Role of child sex and maternal behavior. Developmental Psychobiology, 57, 212225. doi:10.1002/dev.21284.Google Scholar
Entringer, S., Buss, C., & Wadhwa, P. D. (2010). Prenatal stress and developmental programming of human health and disease risk: Concepts and integration of empirical findings. Current Opinion in Endocrinology, Diabetes, and Obesity, 17, 507516. doi:10.1097/MED.0b013e3283405921.Google Scholar
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488. doi:10.1176/appi.ajp.2007.07030504.Google Scholar
Evans, L., Myers, M., & Monk, C. (2008). Pregnant women's cortisol is elevated with anxiety and depression—But only when comorbid. Archives of Womens Mental Health, 11, 239248. doi:10.1007/s00737-008-0019-4.Google Scholar
Fisher, P. A. (2016). Translational neuroscience as a tool for intervention development in the context of high-adversity families. New Directions for Child and Adolescent Development, 153, 111125.Google Scholar
Flemming, K., Graham, H., Heirs, M., Fox, D., & Sowden, A. (2013). Smoking in pregnancy: A systematic review of qualitative research of women who commence pregnancy as smokers. Journal of Advanced Nursing, 69, 10231036. doi:10.1111/jan.12066.Google Scholar
Fowden, A. L., Valenzuela, O. A., Vaughan, O. R., Jellyman, J. K., & Forhead, A. J. (2016). Glucocorticoid programming of intrauterine development. Domestic Animal Endocrinology, 56 (Suppl.), S121S132. doi:10.1016/j.domaniend.2016.02.014.Google Scholar
Frederick, A. L., & Stanwood, G. D. (2009). Drugs, biogenic amine targets and the developing brain. Developmental Neuroscience, 31, 722. doi:10.1159/000207490.Google Scholar
Frick, L. R., Williams, K., & Pittenger, C. (2013). Microglial dysregulation in psychiatric disease. Clinical and Developmental Immunology, 2013, 608654. doi:10.1155/2013/608654.Google Scholar
Fride, E., & Weinstock, M. (1988). Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Science, 42, 10591065.Google Scholar
Gale, C. R., O'Callaghan, F. J., Godfrey, K. M., Law, C. M., & Martyn, C. N. (2004). Critical periods of brain growth and cognitive function in children. Brain, 127(Pt .2), 321329. doi:10.1093/brain/awh034.Google Scholar
Gaspar, P., Cases, O., & Maroteaux, L. (2003). The developmental role of serotonin: News from mouse molecular genetics. Nature Reviews Neuroscience, 4, 10021012. doi:10.1038/nrn1256.Google Scholar
Gitau, R., Fisk, N. M., & Glover, V. (2001). Maternal stress in pregnancy and its effect on the human foetus: An overview of research findings. Stress, 4, 195203.Google Scholar
Goedhart, G., Vrijkotte, T. G., Roseboom, T. J., van der Wal, M. F., Cuijpers, P., & Bonsel, G. J. (2010). Maternal cortisol and offspring birthweight: Results from a large prospective cohort study. Psychoneuroendocrinology, 35, 644652. doi:10.1016/j.psyneuen.2009.10.003.Google Scholar
Gold, P. W., & Chrousos, G. P. (2002). Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Molecular Psychiatry, 7, 254275. doi:10.1038/sj.mp.4001032.Google Scholar
Golubeva, A. V., Crampton, S., Desbonnet, L., Edge, D., O'Sullivan, O., Lomasney, K. W., … Cryan, J. F. (2015). Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 60, 5874. doi:10.1016/j.psyneuen.2015.06.002.Google Scholar
Gómez, R. L., & Edgin, J. O. (2016). The extended trajectory of hippocampal development: Implications for early memory development and disorder. Developmental Cognitive Neuroscience, 18, 5769. doi:10.1016/j.dcn.2015.08.009.Google Scholar
Greaves, L., Poole, N., Okoli, C. T. C., Hemsing, N., Qu, A., Bialystok, L., & O'Leary, R. (2011). Expecting to Quit: A best-practices review of smoking cessation interventions for pregnant and post-partum women. Vancouver, BC: British Columbia Centre of Excellence for Women's Health.Google Scholar
Green, B. B., Armstrong, D. A., Lesseur, C., Paquette, A. G., Guerin, D. J., Kwan, L. E., & Marsit, C. J. (2015). The role of placental 11-beta hydroxysteroid dehydrogenase type 1 and type 2 methylation on gene expression and infant birth weight. Biology of Reproduction, 92, 149. doi:10.1095/biolreprod.115.128066.Google Scholar
Groen, W., Teluij, M., Buitelaar, J., & Tendolkar, I. (2010). Amygdala and hippocampus enlargement during adolescence in autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 552560. doi:10.1016/j.jaac.2009.12.023.Google Scholar
Grunau, R. E., Haley, D. W., Whitfield, M. F., Weinberg, J., Yu, W., & Thiessen, P. (2007). Altered basal cortisol levels at 3, 6, 8 and 18 months in infants born at extremely low gestational age. Journal of Pediatrics, 150, 151156. doi:10.1016/j.jpeds.2006.10.053.Google Scholar
Grunau, R. E., Holsti, L., Haley, D. W., Oberlander, T., Weinberg, J., Solimano, A., … Yu, W. (2005). Neonatal procedural pain exposure predicts lower cortisol and behavioral reactivity in preterm infants in the NICU. Pain, 113, 293300. doi:10.1016/j.pain.2004.10.020.Google Scholar
Grunau, R. E., Whitfield, M. F., Petrie-Thomas, J., Synnes, A. R., Cepeda, I. L., Keidar, A., … Johannesen, D. (2009). Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain, 143, 138146. doi:10.1016/j.pain.2009.02.014.Google Scholar
Gutteling, B. M., de Weerth, C., & Buitelaar, J. K. (2005). Prenatal stress and children's cortisol reaction to the first day of school. Psychoneuroendocrinology, 30, 541549. doi:10.1016/j.psyneuen.2005.01.002.Google Scholar
Gyllstrom, M. E., Hellerstedt, W. L., & Hennrikus, D. (2012). The association of maternal mental health with prenatal smoking cessation and postpartum relapse in a population-based sample. Maternal and Child Health Journal, 16, 685693. doi:10.1007/s10995-011-0764-2.Google Scholar
Harville, E. W., Savitz, D. A., Dole, N., Herring, A. H., Thorp, J. M., & Light, K. C. (2008). Stress and placental resistance measured by Doppler ultrasound in early and mid-pregnancy. Ultrasound in Obstetrics and Gynecology, 32, 2330. doi:10.1002/uog.5344.Google Scholar
Helbig, A., Kaasen, A., Malt, U. F., & Haugen, G. (2011). Psychological distress after recent detection of fetal malformation: Short-term effect on second-trimester uteroplacental and fetoplacental circulation. British Journal of Obstetrics and Gynaecology, 118, 16531657. doi:10.1111/j.1471-0528.2011.03155.x.Google Scholar
Helbig, A., Kaasen, A., Malt, U. F., & Haugen, G. (2013). Does antenatal maternal psychological distress affect placental circulation in the third trimester? PLOS ONE, 8, e57071. doi:10.1371/journal.pone.0057071.Google Scholar
Henry, C., Kabbaj, M., Simon, H., Le Moal, M., & Maccari, S. (1994). Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. Journal of Neuroendocrinology, 6, 341345.Google Scholar
Hiroi, R., Carbone, D. L., Zuloaga, D. G., Bimonte-Nelson, H. A., & Handa, R. J. (2016). Sex-dependent programming effects of prenatal glucocorticoid treatment on the developing serotonin system and stress-related behaviors in adulthood. Neuroscience, 320, 4356. doi:10.1016/j.neuroscience.2016.01.055.Google Scholar
Hollis, B., Prefumo, F., Bhide, A., Rao, S., & Thilaganathan, B. (2003). First-trimester uterine artery blood flow and birth weight. Ultrasound in Obstetrics and Gynecology, 22, 373376. doi:10.1002/uog.231.Google Scholar
Holz, N., Boecker, R., Baumeister, S., Hohm, E., Zohsel, K., Buchmann, A., … Laucht, M. (2014). Effect of prenatal exposure to tobacco smoke on inhibitory control neuroimaging results from a 25-year prospective study. Journal of the American Medical Association Psychiatry, 71, 786796. doi:10.1001/jamapsychiatry.2014.786.Google Scholar
Huizink, A., & Bögels, S. (2013). Moving beyond the longitudinal approach to understand prenatal mechanisms. Australian Psychologist, 48, 246248. doi:10.1111/ap.12023.Google Scholar
Huizink, A., Delforterie, M., Scheinin, N., Tolvanen, M., Karlsson, L., & Karlsson, H. (2016). Adaption of pregnancy anxiety questionnaire-revised for all pregnant women regardless of parity: PRAQ-R2. Archives of Womens Mental Health, 19, 125132. doi:10.1007/s00737-015-0531-2.Google Scholar
Huizink, A., Mulder, E., de Medina, P., Visser, G., & Buitelaar, J. (2004). Is pregnancy anxiety a distinctive syndrome? Early Human Development, 79, 8191. doi:10.1016/j.earlhumdev.2004.04.014.Google Scholar
Huizink, A. C., de Medina, P. G., Mulder, E. J., Visser, G. H., & Buitelaar, J. K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 10781085.Google Scholar
Huizink, A. C., de Medina, P. G., Mulder, E. J., Visser, G. H., & Buitelaar, J. K. (2003). Stress during pregnancy is associated with developmental outcome in infancy. Journal of Child Psychology and Psychiatry, 44, 810818.Google Scholar
Huizink, A. C., Dick, D. M., Sihvola, E., Pulkkinen, L., Rose, R. J., & Kaprio, J. (2007). Chernobyl exposure as stressor during pregnancy and behaviour in adolescent offspring. Acta Psychiatrica Scandinavica, 116, 438446. doi:10.1111/j.1600-0447.2007.01050.x.Google Scholar
Huizink, A. C., Menting, B., de Moor, M. H. M., Verhage, M. L., Kunseler, F. C., Schuengel, C., & Oosterman, M. (2017). From prenatal anxiety to parenting stress: A longitudinal study. Archives of Womens Mental Health. doi:10.1007/s00737-017-0746-5.Google Scholar
Huizink, A. C., & Mulder, E. J. (2006). Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neuroscience and Biobehavioral Reviews, 30, 2441. doi:10.1016/j.neubiorev.2005.04.005.Google Scholar
Huizink, A. C., Mulder, E. J., & Buitelaar, J. K. (2004). Prenatal stress and risk for psychopathology: Specific effects or induction of general susceptibility? Psychological Bulletin, 130, 115142. doi:10.1037/0033-2909.130.1.115.Google Scholar
Hurley, K. M., Caulfield, L. E., Sacco, L. M., Costigan, K. A., & DiPietro, J. A. (2005). Psychosocial influences in dietary patterns during pregnancy. Journal of the American Dietetic Association, 105, 963966. doi:10.1016/j.jada.2005.03.007.Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748751. doi:10.1176/appi.ajp.2010.09091379.Google Scholar
Jaber, M., Robinson, S. W., Missale, C., & Caron, M. G. (1996). Dopamine receptors and brain function. Neuropharmacology, 35, 15031519.Google Scholar
Jacobson, J. L., & Jacobson, S. W. (1999). Drinking moderately and pregnancy: Effects on child development. Alcohol Research & Health, 23, 2530.Google Scholar
Janowsky, D. S., Overstreet, D. H., & Nurnberger, J. I. (1994). Is cholinergic sensitivity a genetic marker for the affective disorders? American Journal of Medical Genetics, 54, 335344. doi:10.1002/ajmg.1320540412.Google Scholar
Joubert, B. R., den Dekker, H. T., Felix, J. F., Bohlin, J., Ligthart, S., Beckett, S., … London, S. J. (2016). Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nature Communications, 10, 10577. doi:10.1038/ncomms10577.Google Scholar
Jung, C., Ho, J. T., Torpy, D. J., Rogers, A., Doogue, M., Lewis, J. G., … Inder, W. J. (2011). A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. Journal of Clinical Endocrinology and Metabolism, 96, 15331540. doi:10.1210/jc.2010-2395.Google Scholar
Kajantie, E., Dunkel, L., Turpeinen, U., Stenman, U. H., Wood, P. J., Nuutila, M., & Andersson, S. (2003). Placental 11 beta-hydroxysteroid dehydrogenase-2 and fetal cortisol/cortisone shuttle in small preterm infants. Journal of Clinical Endocrinology and Metabolism, 88, 493500. doi:10.1210/jc.2002-021378.Google Scholar
Kane, H., Schetter, C., Glynn, L., Hobel, C., & Sandman, C. (2014). Pregnancy anxiety and prenatal cortisol trajectories. Biological Psychology, 100, 1319. doi:10.1016/j.biopsycho.2014.04.003.Google Scholar
Kapoor, A., Dunn, E., Kostaki, A., Andrews, M. H., & Matthews, S. G. (2006). Fetal programming of hypothalamo-pituitary-adrenal function: Prenatal stress and glucocorticoids. Journal of Physiology, 572, 3144. doi:10.1113/jphysiol.2006.105254.Google Scholar
Kataja, E. L., Karlsson, L., Huizink, A. C., Tolvanen, M., Parsons, C., Nolvi, S., & Karlsson, H. (2017). Pregnancy-related anxiety and depressive symptoms are associated with visuospatial working memory errors during pregnancy. Journal of Affective Disorders, 218, 6674. doi:10.1016/j.jad.2017.04.033.Google Scholar
Keiver, K., Bertram, C. P., Orr, A. P., & Clarren, S. (2015). Salivary cortisol levels are elevated in the afternoon and at bedtime in children with prenatal alcohol exposure. Alcohol, 49, 7987. doi:10.1016/j.alcohol.2014.11.004.Google Scholar
Kelesidis, T., & Mantzoros, C. S. (2006). The emerging role of leptin in humans. Pediatric Endocrinology Reviews, 3, 239248.Google Scholar
Kempnå, P., & Flück, C. E. (2008). Adrenal gland development and defects. Best Practice and Research. Clinical Endocrinology and Metabolism, 22, 7793. doi:10.1016/j.beem.2007.07.008.Google Scholar
King, B. R., Smith, R., & Nicholson, R. C. (2001). The regulation of human corticotrophin-releasing hormone gene expression in the placenta. Peptides, 22, 19411947.Google Scholar
Kramer, M., Lydon, J., Seguin, L., Goulet, L., Kahn, S., McNamara, H., … Platt, R. (2009). Stress pathways to spontaneous preterm birth: The role of stressors, psychological distress, and stress hormones. American Journal of Epidemiology, 169, 13191326. doi:10.1093/aje/kwp061.Google Scholar
Kühn, S., Witt, C., Banaschewski, T., Barbot, A., Barker, G. J., Buchel, C., … Gallinat, J. (2016). From mother to child: Orbitofrontal cortex gyrification and changes of drinking behaviour during adolescence. Addiction Biology, 21, 700708. doi:10.1111/adb.12240.Google Scholar
Kusaka, M., Matsuzaki, M., Shiraishi, M., & Haruna, M. (2016). Immediate stress reduction effects of yoga during pregnancy: One group pre-post test. Women and Birth, 29, E82E88. doi:10.1016/j.wombi.2016.04.003.Google Scholar
Lan, N., Chiu, M. P., Ellis, L., & Weinberg, J. (2017). Prenatal alcohol exposure and prenatal stress differentially alter glucocorticoid signaling in the placenta and fetal brain. Neuroscience, 342, 167179. doi:10.1016/j.neuroscience.2015.08.058.Google Scholar
Lee, E. J., Son, G. H., Chung, S., Lee, S., Kim, J., Choi, S., & Kim, K. (2011). Impairment of fear memory consolidation in maternally stressed male mouse offspring: Evidence for nongenomic glucocorticoid action on the amygdala. Journal of Neuroscience, 31, 71317140. doi: 10.1523/JNEUROSCI.4692-10.2011.Google Scholar
Lester, B. M., Marsit, C. J., Giarraputo, J., Hawes, K., LaGasse, L. L., & Padbury, J. F. (2015). Neurobehavior related to epigenetic differences in preterm infants. Epigenomics, 7, 11231136. doi:10.2217/epi.15.63.Google Scholar
Lester, B. M., Tronick, E., Nestler, E., Abel, T., Kosofsky, B., Kuzawa, C. W., … Wood, M. A. (2011). Behavioral epigenetics. Annals of the New York Academy of Sciences, 1226, 1433. doi:10.1111/j.1749-6632.2011.06037.x.Google Scholar
Levine, T. A., Alderdice, F. A., Grunau, R. E., & McAuliffe, F. M. (2016). Prenatal stress and hemodynamics in pregnancy: A systematic review. Archives of Womens Mental Health, 19, 721739. doi:10.1007/s00737-016-0645-1.Google Scholar
Linares Scott, T. J., Heil, S. H., Higgins, S. T., Badger, G. J., & Bernstein, I. M. (2009). Depressive symptoms predict smoking status among pregnant women. Addictive Behaviors, 34, 705708. doi:10.1016/j.addbeh.2009.04.003.Google Scholar
Lobel, M., Cannella, D. L., Graham, J. E., DeVincent, C., Schneider, J., & Meyer, B. A. (2008). Pregnancy-specific stress, prenatal health behaviors, and birth outcomes. Health Psychology, 27, 604615. doi:10.1037/a0013242.Google Scholar
Lopez-Duran, N. L., Olson, S. L., Hajal, N. J., Felt, B. T., & Vazquez, D. M. (2009). Hypothalamic pituitary adrenal axis functioning in reactive and proactive aggression in children. Journal of Abnormal Child Psychology, 37, 169182. doi:10.1007/s10802-008-9263-3.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445. doi:10.1038/nrn2639.Google Scholar
Majzoub, J. A., & Karalis, K. P. (1999). Placental corticotropin-releasing hormone: Function and regulation. American Journal of Obstetrics and Gynecology, 180, S242S246.Google Scholar
Marques, A. H., Bjorke-Monsen, A. L., Teixeira, A. L., & Silverman, M. N. (2015). Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology. Brain Research, 1617, 2846. doi:10.1016/j.brainres.2014.10.051.Google Scholar
Marsh, A. A., Finger, E. C., Mitchell, D. G., Reid, M. E., Sims, C., Kosson, D. S., … Blair, R. J. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. American Journal of Psychiatry, 165, 712720. doi:10.1176/appi.ajp.2007.07071145.Google Scholar
McCormick, M., Brooksgunn, J., Shorter, T., Holmes, J., Wallace, C., & Heagarty, M. (1990). Factors associated with smoking In low-income pregnant-women—Relationship to birth-weight, stressful life events, social support, health behaviors and mental distress. Journal of Clinical Epidemiology, 43, 441448. doi:10.1016/0895-4356(90)90132-9.Google Scholar
McLachlan, K., Rasmussen, C., Oberlander, T. F., Loock, C., Pei, J., Andrew, G., … Weinberg, J. (2016). Dysregulation of the cortisol diurnal rhythm following prenatal alcohol exposure and early life adversity. Alcohol, 53, 918. doi:10.1016/j.alcohol.2016.03.003.Google Scholar
Mendelson, T., DiPietro, J. A., Costigan, K. A., Chen, P., & Henderson, J. L. (2011). Associations of maternal psychological factors with umbilical and uterine blood flow. Journal of Psychosomatic Obstetrics and Gynaecology, 32, 39. doi:10.3109/0167482X.2010.544427.Google Scholar
Mennes, M., Van den Bergh, B., Lagae, L., & Stiers, P. (2009). Developmental brain alterations in 17 year old boys are related to antenatal maternal anxiety. Clinical Neurophysiology, 120, 11161122. doi:10.1016/j.clinph.2009.04.003.Google Scholar
Meschke, L. L., Hellerstedt, W., Holl, J. A., & Messelt, S. (2008). Correlates of prenatal alcohol use. Maternal Child Health Journal, 12, 442451. doi:10.1007/s10995-007-0261-9.Google Scholar
Messer, W. S. (2002). Cholinergic agonists and the treatment of Alzheimer's disease. Current Topics in Medicinal Chemistry, 2, 353358.Google Scholar
Monk, C., Feng, T., Lee, S., Krupska, I., Champagne, F. A., & Tycko, B. (2016). Distress during pregnancy: Epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. American Journal of Psychiatry, 173, 705713. doi:10.1176/appi.ajp.2015.15091171.Google Scholar
Monk, C., Georgieff, M. K., & Osterholm, E. A. (2013). Research review: Maternal prenatal distress and poor nutrition—Mutually influencing risk factors affecting infant neurocognitive development. Journal of Child Psychology and Psychiatry, 54, 115130. doi:10.1111/jcpp.12000.Google Scholar
Mueller, A., Brocke, B., Fries, E., Lesch, K. P., & Kirschbaum, C. (2010). The role of the serotonin transporter polymorphism for the endocrine stress response in newborns. Psychoneuroendocrinology, 35, 289296. doi:10.1016/j.psyneuen.2009.07.002.Google Scholar
Mulder, E. J., Robles de Medina, P. G., Huizink, A. C., Van den Bergh, B. R., Buitelaar, J. K., & Visser, G. H. (2002). Prenatal maternal stress: Effects on pregnancy and the (unborn) child. Early Human Development, 70, 314.Google Scholar
Mulder, E. J., Ververs, F. F., de Heus, R., & Visser, G. H. (2011). Selective serotonin reuptake inhibitors affect neurobehavioral development in the human fetus. Neuropsychopharmacology, 36, 19611971. doi:10.1038/npp.2011.67.Google Scholar
Müller, K. U., Mennigen, E., Ripke, S., Banaschewski, T., Barker, G. J., Büchel, C., … IMAGEN Consortium (2013). Altered reward processing in adolescents with prenatal exposure to maternal cigarette smoking. Journal of the American Medical Association Psychiatry, 70, 847856. doi:10.1001/jamapsychiatry.2013.44.Google Scholar
Mulligan, C. J., D'Errico, N. C., Stees, J., & Hughes, D. A. (2012). Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics, 7, 853857. doi:10.4161/epi.21180.Google Scholar
Murphy, V. E., & Clifton, V. L. (2003). Alterations in human placental 11β-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta, 24, 739744.Google Scholar
Murphy, V. E., Smith, R., Giles, W. B., & Clifton, V. L. (2006). Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocrine Reviews, 27, 141169. doi:10.1210/er.2005-0011.Google Scholar
Nitschke, J. B., Sarinopoulos, I., Mackiewicz, K. L., Schaefer, H. S., & Davidson, R. J. (2006). Functional neuroanatomy of aversion and its anticipation. Neuroimage, 29, 106116. doi:10.1016/j.neuroimage.2005.06.068.Google Scholar
Nolen-Hoeksema, S., & Watkins, E. R. (2011). A heuristic for developing transdiagnostic models of psychopathology: Explaining multifinality and divergent trajectories. Perspectives on Psychological Science, 6, 589609. doi:10.1177/1745691611419672.Google Scholar
Nolvi, S., Karlsson, L., Bridgett, D. J., Korja, R., Huizink, A. C., Kataja, E. L., & Karlsson, H. (2016). Maternal prenatal stress and infant emotional reactivity six months postpartum. Journal of Affective Disorders, 199, 163170. doi:10.1016/j.jad.2016.04.020.Google Scholar
Nosarti, C., & Froudist-Walsh, S. (2016). Alterations in development of hippocampal and cortical memory mechanisms following very preterm birth. Developmental Medicine and Child Neurology, 58(Suppl. 4), 3545. doi:10.1111/dmcn.13042.Google Scholar
Oberlander, T. F. (2012). Fetal serotonin signaling: Setting pathways for early childhood development and behavior. Journal of Adolescent Health, 51(2 Suppl.), S9S16. doi:10.1016/j.jadohealth.2012.04.009.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106.Google Scholar
O'Brien, J. T., Lloyd, A., McKeith, I., Gholkar, A., & Ferrier, N. (2004). A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. American Journal of Psychiatry, 161, 20812090. doi:10.1176/appi.ajp.161.11.2081.Google Scholar
O'Connor, T., Tang, W., Gilchrist, M., Moynihan, J., Pressman, E., & Blackmore, E. (2014). Diurnal cortisol patterns and psychiatric symptoms in pregnancy: Short-term longitudinal study. Biological Psychology, 96, 3541. doi:10.1016/j.biopsycho.2013.11.002.Google Scholar
O'Connor, T. G., Ben-Shlomo, Y., Heron, J., Golding, J., Adams, D., & Glover, V. (2005). Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biological Psychiatry, 58, 211217. doi:10.1016/j.biopsych.2005.03.032.Google Scholar
O'Donnell, K., O'Connor, T., & Glover, V. (2009). Prenatal stress and neurodevelopment of the child: Focus on the HPA axis and role of the placenta. Developmental Neuroscience, 31, 285292. doi:10.1159/000216539.Google Scholar
O'Donnell, K. J., Bugge Jensen, A., Freeman, L., Khalife, N, O'Connor, T. G., & Glover, V. (2012). Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology, 37, 818826. doi:10.1016/j.psyneuen.2011.09.014.Google Scholar
O'Donnell, K. J., & Meaney, M. J. (2017). Fetal origins of mental health: The developmental origins of health and disease hypothesis. American Journal of Psychiatry, 174, 319328. doi:10.1176/appi.ajp.2016.16020138.Google Scholar
Osler, M., Nordentoft, M., & Andersen, A. M. (2005). Birth dimensions and risk of depression in adulthood: Cohort study of Danish men born in 1953. British Journal of Psychiatry, 186, 400403. doi:10.1192/bjp.186.5.400.Google Scholar
Ouellet-Morin, I., Dionne, G., Lupien, S. J., Muckle, G., Côté, S., Pérusse, D., … Boivin, M. (2011). Prenatal alcohol exposure and cortisol activity in 19-month-old toddlers: An investigation of the moderating effects of sex and testosterone. Psychopharmacology (Berlin), 214, 297307. doi:10.1007/s00213-010-1955-z.Google Scholar
Pereira, P. P., Da Mata, F. A., Figueiredo, A. C., de Andrade, K. R., & Pereira, M. G. (2017). Maternal active smoking during pregnancy and low birth weight in the Americas: A systematic review and meta-analysis. Nicotine and Tobacco Research, 19, 497505. doi:10.1093/ntr/ntw228.Google Scholar
Peters, D. A. (1990). Maternal stress increases fetal brain and neonatal cerebral cortex 5-hydroxytryptamine synthesis in rats: A possible mechanism by which stress influences brain development. Pharmacology, Biochemistry, and Behavior, 35, 943947.Google Scholar
Phillips, D. I., & Jones, A. (2006). Fetal programming of autonomic and HPA function: Do people who were small babies have enhanced stress responses? Journal of Physiology, 572, 4550. doi:10.1113/jphysiol.2005.104695.Google Scholar
Plamondon, R., O'Reilly, C., Remi, C., & Duval, T. (2013). The lognormal handwriter: Learning, performing, and declining. Frontiers in Psychology, 4, 945. doi:10.3389/fpsyg.2013.00945.Google Scholar
Principi, N., & Esposito, S. (2016). Gut microbiota and central nervous system development. Journal of Infection, 73, 536546. doi:10.1016/j.jinf.2016.09.010.Google Scholar
Pruessner, M., Lepage, M., Collins, D. L., Pruessner, J. C., Joober, R., & Malla, A. K. (2015). Reduced hippocampal volume and hypothalamus-pituitary-adrenal axis function in first episode psychosis: Evidence for sex differences. Neuroimage Clinical, 7, 195202. doi:10.1016/j.nicl.2014.12.001.Google Scholar
Qiu, A., Rifkin-Graboi, A., Chen, H., Chong, Y. S., Kwek, K., Gluckman, P. D., … Meaney, M. J. (2013). Maternal anxiety and infants' hippocampal development: Timing matters. Translational Psychiatry, 3, e306. doi:10.1038/tp.2013.79.Google Scholar
Radley, J. J., Arias, C. M., & Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. Journal of Neuroscience, 26, 1296712976. doi:10.1523/JNEUROSCI.4297-06.2006.Google Scholar
Reynolds, R. M. (2013). Glucocorticoid excess and the developmental origins of disease: Two decades of testing the hypothesis—2012 Curt Richter Award Winner. Psychoneuroendocrinology, 38, 111. doi:10.1016/j.psyneuen.2012.08.012.Google Scholar
Rifkin-Graboi, A., Meaney, M. J., Chen, H., Bai, J., Hameed, W. B., Tint, M. T., … Qiu, A. (2015). Antenatal maternal anxiety predicts variations in neural structures implicated in anxiety disorders in newborns. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 313321. doi:10.1016/j.jaac.2015.01.013.Google Scholar
Rijlaarsdam, J., Pappa, I., Walton, E., Bakermans-Kranenburg, M. J., Mileva-Seitz, V. R., Rippe, R. C., … van IJzendoorn, M. H. (2016). An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: A model approach for replication. Epigenetics, 11, 140149. doi:10.1080/15592294.2016.1145329.Google Scholar
Roesch, S., Schetter, C., Woo, G., & Hobel, C. (2004). Modeling the types and timing of stress in pregnancy. Anxiety Stress and Coping, 17, 87102. doi:10.1080/1061580031000123667.Google Scholar
Rubio, D. M., Kraemer, K. L., Farrell, M. H., & Day, N. L. (2008). Factors associated with alcohol use, depression, and their co-occurrence during pregnancy. Alcoholism, Clinical and Experimental Research, 32, 15431551. doi:10.1111/j.1530-0277.2008.00705.x.Google Scholar
Rurak, D., Lim, K., Sanders, A., Brain, U., Riggs, W., & Oberlander, T. F. (2011). Third trimester fetal heart rate and Doppler middle cerebral artery blood flow velocity characteristics during prenatal selective serotonin reuptake inhibitor exposure. Pediatric Research, 70, 96101. doi:10.1203/PDR.0b013e31821ba11a.Google Scholar
Sandman, C. A., Davis, E. P., Buss, C., & Glynn, L. M. (2011). Prenatal programming of human neurological function. International Journal of Peptides, 2011, 837596. doi:10.1155/2011/837596.Google Scholar
Sandman, C. A., Glynn, L., Schetter, C. D., Wadhwa, P., Garite, T., Chicz-DeMet, A., & Hobel, C. (2006). Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock. Peptides, 27, 14571463. doi:10.1016/j.peptides.2005.10.002.Google Scholar
Saridjan, N. S., Huizink, A. C., Koetsier, J. A., Jaddoe, V. W., Mackenbach, J. P., Hofman, A., … Tiemeier, H. (2010). Do social disadvantage and early family adversity affect the diurnal cortisol rhythm in infants? The Generation R Study. Hormones and Behavior, 57, 247254. doi:10.1016/j.yhbeh.2009.12.001.Google Scholar
Sarkar, P., Bergman, K., O'Connor, T. G., & Glover, V. (2008). Maternal antenatal anxiety and amniotic fluid cortisol and testosterone: Possible implications for foetal programming. Journal of Neuroendocrinology, 20, 489496. doi:10.1111/j.1365-2826.2008.01659.x.Google Scholar
Sarkar, S., Craig, M. C., Dell'Acqua, F., O'Connor, T. G., Catani, M., Deeley, Q., … Murphy, D. G. (2014). Prenatal stress and limbic-prefrontal white matter microstructure in children aged 6-9 years: A preliminary diffusion tensor imaging study. World Journal of Biological Psychiatry, 15, 346352. doi:10.3109/15622975.2014.903336.Google Scholar
Schäffer, L., Müller-Vizentini, D., Burkhardt, T., Rauh, M., Ehlert, U., & Beinder, E. (2009). Blunted stress response in small for gestational age neonates. Pediatric Research, 65, 231235. doi:10.1203/PDR.0b013e318191fb44.Google Scholar
Schlotz, W., & Phillips, D. I. (2009). Fetal origins of mental health: Evidence and mechanisms. Brain, Behavior, and Immunity, 23, 905916. doi:10.1016/j.bbi.2009.02.001.Google Scholar
Schmidt, L. A., Fox, N. A., Rubin, K. H., Sternberg, E. M., Gold, P. W., Smith, C. C., & Schulkin, J. (1997). Behavioral and neuroendocrine responses in shy children. Developmental Psychobiology, 30, 127140.Google Scholar
Schoof, E., Girstl, M., Frobenius, W., Kirschbaum, M., Repp, R., Knerr, I., … Dotsch, J. (2001). Course of placental 11beta-hydroxysteroiid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase mRNA expression during human gestation. European Journal of Endocrinology, 145, 187192.Google Scholar
Seckl, J. R., & Chapman, K. E. (1997). Medical and physiological aspects of the 11beta-hydroxysteroid dehydrogenase system. European Journal of Biochemistry, 249, 361364.Google Scholar
Sheinkopf, S. J., Righi, G., Marsit, C. J., & Lester, B. M. (2016). Methylation of the glucocorticoid receptor (NR3C1) in placenta is associated with infant cry acoustics. Frontiers in Behavioral Neuroscience, 10, 100. doi:10.3389/fnbeh.2016.00100.Google Scholar
Smaling, H. J., Huijbregts, S. C., van der Heijden, S. H., & Swaab, H. (2016). Maternal reflective functioning as a multidimensional construct: Differential associations with children's temperament and externalizing behavior. Infant Behavior and Development, 44, 263274. doi:10.1016/j.infbeh.2016.06.007.Google Scholar
Spinillo, A., Viazzo, F., Colleoni, R., Chiara, A., Maria Cerbo, R., & Fazzi, E. (2004). Two-year infant neurodevelopmental outcome after single or multiple antenatal courses of corticosteroids to prevent complications of prematurity. American Journal of Obstetrics and Gynecology, 191, 217224. doi:10.1016/j.ajog.2003.12.023.Google Scholar
St. Clair, D., Xu, M., Wang, P., Yu, Y., Fang, Y., Zhang, F., … He, L. (2005). Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. Journal of the American Medical Association, 294, 557562. doi:10.1001/jama.294.5.557.Google Scholar
Stroud, L. R., Papandonatos, G. D., Rodriguez, D., McCallum, M., Salisbury, A. L., Phipps, M. G., … Marsit, C. J. (2014). Maternal smoking during pregnancy and infant stress response: Test of a prenatal programming hypothesis. Psychoneuroendocrinology, 48, 2940. doi:10.1016/j.psyneuen.2014.05.017.Google Scholar
Su, Q., Zhang, H., Zhang, Y., Ding, D., Zeng, J., Zhu, Z., & Li, H. (2015). Maternal stress in gestation: Birth outcomes and stress-related hormone response of the neonates. Pediatrics and Neonatology, 56, 376381. doi:10.1016/j.pedneo.2015.02.002.Google Scholar
Sullivan, R. M., & Gratton, A. (2002). Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: Side matters. Psychoneuroendocrinology, 27, 99114.Google Scholar
Susser, E., Hoek, H. W., & Brown, A. (1998). Neurodevelopmental disorders after prenatal famine: The story of the Dutch Famine Study. American Journal of Epidemiology, 147, 213216.Google Scholar
Talge, N. M., Neal, C., Glover, V., & Early Stress, Translation Research and Prevention Science Network. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48, 245261. doi:10.1111/j.1469-7610.2006.01714.x.Google Scholar
Taylor, M. J., Freemantle, N., Geddes, J. R., & Bhagwagar, Z. (2006). Early onset of selective serotonin reuptake inhibitor antidepressant action: Systematic review and meta-analysis. Archives of General Psychiatry, 63, 12171223. doi:10.1001/archpsyc.63.11.1217.Google Scholar
Thomas, K. A., Burr, R. L., Spieker, S., Lee, J., & Chen, J. (2014). Mother-infant circadian rhythm: Development of individual patterns and dyadic synchrony. Early Human Development, 90, 885890. doi:10.1016/j.earlhumdev.2014.09.005.Google Scholar
Thomas, K. M., Drevets, W. C., Dahl, R. E., Ryan, N. D., Birmaher, B., Eccard, C. H., … Casey, B. J. (2001). Amygdala response to fearful faces in anxious and depressed children. Archives of General Psychiatry, 58, 10571063.Google Scholar
Thompson, B. L., Levitt, P., & Stanwood, G. D. (2009). Prenatal exposure to drugs: Effects on brain development and implications for policy and education. Nature Reviews Neuroscience, 10, 303312. doi:10.1038/nrn2598.Google Scholar
Togher, K. L., O'Keeffe, M. M., Khashan, A. S., Gutierrez, H., Kenny, L. C., & O'Keeffe, G. W. (2014). Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics, 9, 816822. doi:10.4161/epi.28703.Google Scholar
Togher, K. L., Treacy, E., O'Keeffe, G. W., & Kenny, L. C. (2017). Maternal distress in late pregnancy alters obstetric outcomes and the expression of genes important for placental glucocorticoid signalling. Psychiatry Research, 255, 1726. doi:10.1016/j.psychres.2017.05.013.Google Scholar
Toro, R., Leonard, G., Lerner, J. V., Lerner, R. M., Perron, M., Pike, G. B., … Paus, T. (2008). Prenatal exposure to maternal cigarette smoking and the adolescent cerebral cortex. Neuropsychopharmacology, 33, 10191027. doi:10.1038/sj.npp.1301484.Google Scholar
Valenzuela, C. F., Puglia, M. P., & Zucca, S. (2011). Focus on: Neurotransmitter systems. Alcohol Research & Health, 34, 106120.Google Scholar
Valleau, J. C., & Sullivan, E. L. (2014). The impact of leptin on perinatal development and psychopathology. Journal of Chemical Neuroanatomy, 61–62, 221232. doi:10.1016/j.jchemneu.2014.05.001.Google Scholar
van Bodegom, M., Homberg, J. R., & Henckens, M. J. A. G. (2017). Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Frontiers in Cellular Neuroscience, 11, 87. doi:10.3389/fncel.2017.00087.Google Scholar
Van den Bergh, B. R., Mulder, E. J., Mennes, M., & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237258. doi:10.1016/j.neubiorev.2004.10.007.Google Scholar
Vedhara, K., Metcalfe, C., Brant, H., Crown, A., Northstone, K., Dawe, K., … Smith, G. D. (2012). Maternal mood and neuroendocrine programming: Effects of time of exposure and sex. Journal of Neuroendocrinology, 24, 9991011. doi:10.1111/j.1365-2826.2012.02309.x.Google Scholar
Vermetten, E., & Bremner, J. D. (2002). Circuits and systems in stress: I. Preclinical studies. Depression and Anxiety, 15, 126147. doi:10.1002/da.10016.Google Scholar
Viena, T. D., Banks, J. B., Barbu, I. M., Schulman, A. H., & Tartar, J. L. (2012). Differential effects of mild chronic stress on cortisol and S-IgA responses to an acute stressor. Biological Psychology, 91, 307311. doi:10.1016/j.biopsycho.2012.08.003.Google Scholar
Visser, G. H., Mulder, E. J., & Tessa Ververs, F. F. (2010). Fetal behavioral teratology. Journal of Maternal-Fetal and Neonatal Medicine, 23 (Suppl. 3), 1416. doi:10.3109/14767058.2010.517717.Google Scholar
Voegtline, K. M., Costigan, K. A., Kivlighan, K. T., Laudenslager, M. L., Henderson, J. L., & DiPietro, J. A. (2013). Concurrent levels of maternal salivary cortisol are unrelated to self-reported psychological measures in low-risk pregnant women. Archives of Womens Mental Health, 16, 101108. doi:10.1007/s00737-012-0321-z.Google Scholar
Wahlbeck, K., Forsen, T., Osmond, C., Barker, D., & Eriksson, J. (2001). Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Archives of General Psychiatry, 58, 4852. doi:10.1001/archpsyc.58.1.48.Google Scholar
Walker, R. W., Clemente, J. C., Peter, I., & Loos, R. J. F. (2017). The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatric Obesity. doi:10.1111/ijpo.12217.Google Scholar
Wankerl, M., Miller, R., Kirschbaum, C., Hennig, J., Stalder, T., & Alexander, N. (2014). Effects of genetic and early environmental risk factors for depression on serotonin transporter expression and methylation profiles. Translational Psychiatry, 4, e402. doi:10.1038/tp.2014.37.Google Scholar
Wapner, R. J., Sorokin, Y., Mele, L., Johnson, F., Dudley, D. J., Spong, C. Y., … National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. (2007). Long-term outcomes after repeat doses of antenatal corticosteroids. New England Journal of Medicine, 357, 11901198. doi:10.1056/NEJMoa071453.Google Scholar
Way, B. M., & Taylor, S. E. (2010). Social influences on health: Is serotonin a critical mediator? Psychosomatic Medicine, 72, 107112. doi:10.1097/PSY.0b013e3181ce6a7d.Google Scholar
Weinstock, M., Poltyrev, T., Schorer-Apelbaum, D., Men, D., & McCarty, R. (1998). Effect of prenatal stress on plasma corticosterone and catecholamines in response to footshock in rats. Physiology and Behavior, 64, 439444.Google Scholar
Welberg, L. A., & Seckl, J. R. (2001). Prenatal stress, glucocorticoids and the programming of the brain. Journal of Neuroendocrinology, 13, 113128.Google Scholar
Westerneng, M., Witteveen, A. B., Warmelink, J. C., Spelten, E., Honig, A., & de Cock, P. (2017). Pregnancy-specific anxiety and its association with background characteristics and health-related behaviors in a low-risk population. Comprehensive Psychiatry, 75, 613. doi:10.1016/j.comppsych.2017.02.002.Google Scholar
Whitaker-Azmitia, P. M., Druse, M., Walker, P., & Lauder, J. M. (1996). Serotonin as a developmental signal. Behavioural Brain Research, 73, 1929.Google Scholar
Wood, L., France, K., Hunt, K., Eades, S., & Slack-Smith, L. (2008). Indigenous women and smoking during pregnancy: Knowledge, cultural contexts and barriers to cessation. Social Science & Medicine, 66, 23782389. doi:10.1016/j.socscimed.2008.01.024.Google Scholar
Yam, K. Y., Naninck, E. F., Schmidt, M. V., Lucassen, P. J., & Korosi, A. (2015). Early-life adversity programs emotional functions and the neuroendocrine stress system: The contribution of nutrition, metabolic hormones and epigenetic mechanisms. Stress, 18, 328342.Google Scholar
Zijlmans, M. A., Korpela, K., Riksen-Walraven, J. M., de Vos, W. M., & de Weerth, C. (2015). Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 53, 233245. doi: 10.1016/j.psyneuen.2015.01.006.Google Scholar