Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:02:26.471Z Has data issue: false hasContentIssue false

Beyond allostatic load: Rethinking the role of stress in regulating human development

Published online by Cambridge University Press:  26 November 2013

Bruce J. Ellis*
Affiliation:
University of Arizona
Marco Del Giudice
Affiliation:
University of New Mexico
*
Address correspondence and reprint requests to: Bruce J. Ellis, Norton School of Family and Consumer Sciences, University of Arizona, 650 North Park Avenue, P.O. Box 210078, Tucson, AZ 85721-0078; E-mail: [email protected].

Abstract

How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary–developmental theory of stress–health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abed, R. T. (1998). The sexual competition hypothesis for eating disorders. British Journal of Medical Psychology, 71, 525547.Google Scholar
Adam, E. K. (2012). Emotion–cortisol transactions occur over multiple time scales in development: Implications for research on emotion and the development of emotional disorders. Monographs of the Society for Research in Child Development, 77, 1727.CrossRefGoogle Scholar
Alink, L. R. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Mesman, J., Juffer, F., & Koot, H. M. (2008). Cortisol and externalizing behavior in children and adolescents: Mixed meta-analytic evidence for the inverse relation of basal cortisol and cortisol reactivity with externalizing behavior. Developmental Psychobiology, 50, 427450.CrossRefGoogle ScholarPubMed
Allsworth, J. E., Weitzen, S., & Boardman, L. A. (2005). Early age at menarche and allostatic load: Data from the Third National Health and Nutrition Examination Survey. Annals of Epidemiology, 15, 438444.CrossRefGoogle ScholarPubMed
Ayoub, C., O'Connor, E., Rappolt-Schlichtmann, G., Vallotton, C., Raikes, H., & Chazan-Cohen, R. (2009). Cognitive skill performance among children living in poverty: Risk, change, and the promotive effects of Early Head Start. Early Childhood Research Quarterly, 24, 289305.CrossRefGoogle Scholar
Badanes, L. S., Watamura, S. E., & Hankin, B. L. (2011). Hypocortisolism as a potential marker of allostatic load in children: Associations with family risk and internalizing disorders. Development and Psychopathology, 23, 881896.CrossRefGoogle ScholarPubMed
Bagot, R. C., van Hasselt, F. N., Champagne, D. L., Meaney, M. J., Krugers, H. J., & Joels, M. (2009). Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiology of Learning and Memory, 92, 292300.CrossRefGoogle ScholarPubMed
Bateson, P., Barker, D., Clutton-Brock, T., Debal, D., D'Udine, B., Foley, R., et al. (2004). Developmental plasticity and human health. Nature, 430, 419421.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Neuhaus, E., Zalewski, M., Crowell, S. E., & Potapova, N. (2011). The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation. Development and Psychopathology, 23, 975999.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis–stress: Differential susceptibility to environmental influence. Psychological Bulletin, 135, 885908.Google Scholar
Belsky, J., Rosenberger, K., & Crnic, K. (1995). The origins of attachment security: Classical and contextual determinants. In Goldberg, S., Muir, R., & Kerr, J. (Eds.), Attachment theory: Social, developmental and clinical perspectives (pp. 153183). London: Analytic Press.Google Scholar
Belsky, J., Schlomer, G. L., & Ellis, B. J. (2012). Beyond cumulative risk: Distinguishing harshness and unpredictability as determinants of parenting and early life history strategy. Developmental Psychology, 48, 662673.CrossRefGoogle ScholarPubMed
Belsky, J., Spritz, B., & Crnic, K. (1996). Infant attachment security and affective–cognitive information processing at age 3. Psychological Science, 7, 111114.CrossRefGoogle Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.CrossRefGoogle ScholarPubMed
Belsky, J.Steinberg, L., Houts, R. M., & Halpern-Felsher, B. L. (2010). The development of reproductive strategy in females: Early maternal harshness → early menarche → increased sexual risk taking. Developmental Psychology, 46, 120128.CrossRefGoogle ScholarPubMed
Bierman, K. L., Greenberg, M. T., & the Conduct Problems Prevention Research Group. (1996). Social skills training in the Fast Track Program. In Peters, R. D. & McMahon, R. J. (Eds.), Preventing childhood disorders, substance abuse, and delinquency (pp. 6589). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Bilbo, S. D., & Schwarz, J. M. (2012). The immune system and developmental programming of brain and behavior. Frontiers in Neuroendocrinology, 33, 267286.CrossRefGoogle ScholarPubMed
Bingham, B., McFadden, K., Zhang, X., Bhatnagar, S., Beck, S., & Valentino, R. (2011). Early adolescence as a critical window during which social stress distinctly alters behavior and brain norepinephrine activity. Neuropsychopharmacology, 36, 896909.Google Scholar
Blair, C., Granger, D., & Razza, R. P. (2005). Cortisol reactivity is positively related to executive function in preschool children attending Head Start. Child Development, 76, 554567.CrossRefGoogle ScholarPubMed
Blair, C., Granger, D., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., et al. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 19701984.CrossRefGoogle ScholarPubMed
Blair, C., & Raver, C. C. (2012a). Individual development and evolution: Experiential canalization of self-regulation. Developmental Psychology, 48, 647657.Google Scholar
Blair, C., & Raver, C. C. (2012b). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67, 309318.CrossRefGoogle ScholarPubMed
Bleil, M. E., Adler, N. E., Appelhans, B. M., Gregorich, S. E., Sternfeld, B., & Cedars, M. I. (2013). Childhood adversity and pubertal timing: Understanding the origins of adulthood cardiovascular risk. Biological Psychology, 93, 213219.CrossRefGoogle ScholarPubMed
Bleil, M. E., Adler, N. E., Pasch, L. A., Sternfeld, B., Gregorich, S. E., Rosen, M. P., et al. (2012). Psychological stress and reproductive aging among pre-menopausal women. Human Reproduction, 27, 27202728.CrossRefGoogle ScholarPubMed
Boutwell, B. B., Barnes, J. C., Deaton, R., & Beaver, K. M. (2013). On the evolutionary origins of life-course persistent offending: A theoretical scaffold for Moffitt's developmental taxonomy. Journal of Theoretical Biology, 322, 7280.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Developmental Psychopathology, 17, 271301.Google Scholar
Bredy, T. W., Humpartzoomian, R. A., Cain, D. P., & Meaney, M. J. (2003). Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience, 118: 571576.CrossRefGoogle ScholarPubMed
Brody, S. (2002). Age at first intercourse is inversely related to female cortisol stress reactivity. Psychoneuroendocrinology, 27, 933943.Google Scholar
Brumbach, B. H., Figueredo, A. J., & Ellis, B. J. (2009). Effects of harsh and unpredictable environments in adolescence on development of life history strategies. Human Nature, 20, 2551.Google Scholar
Buwalda, B., Stubbendorff, C., Zickert, N., & Koolhaas, J. M. (2013). Adolescent social stress does not necessarily lead to a compromised adaptive capacity during adulthood: A study on the consequences of social stress in rats. Neuroscience, 249, 258270.Google Scholar
Cabib, S., & Puglisi-Allegra, S. (2012). The mesoaccumbens dopamine in coping with stress. Neuroscience & Biobehavioral Reviews, 36, 36: 7989.Google Scholar
Cameron, N. M., Del Corpo, A., Diorio, J., McAllister, K., Sharma, S., & Meaney, M. J. (2008). Maternal programming of sexual behavior and hypothalamic–pituitary–gonadal function in the female rat. PLoS ONE, 3, e2210.CrossRefGoogle ScholarPubMed
Cameron, N. M., Shahrokh, D., Del Corpo, A., Dhir, S. K., Szyf, M., Champagne, F. A., et al. (2008). Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. Journal of Neuroendocrinology, 20, 795801.CrossRefGoogle ScholarPubMed
Campbell, S. B., Spieker, S., Vandergrift, N., Belsky, J., & Burchinal, M. (2010). Predictors and sequelae of trajectories of physical aggression in school-age boys and girls. Development and psychopathology, 22, 133150.Google Scholar
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, E. R., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045.Google Scholar
Champagne, F. A. (2008). Epigenetic mechanisms and the transgenerational effects of maternal care. Frontiers in Neuroendocrinology, 29, 386397.Google Scholar
Chisholm, J. S. (1999). Death, hope and sex: Steps to an evolutionary ecology of mind and morality. Cambridge: Cambridge University Press.Google Scholar
Clancy, K. B., Klein, L. D., Ziomkiewicz, A., Nenko, I., Jasienska, G., & Bribiescas, R. G. (2013). Relationships between biomarkers of inflammation, ovarian steroids, and age at menarche in a rural Polish sample. American Journal of Human Biology, 25, 389398.CrossRefGoogle Scholar
Crawford, C. B., & Anderson, J. L. (1989). Sociobiology: An environmentalist discipline? American Psychologist, 44, 14491459.Google Scholar
Crespi, B. J. (2000). The evolution of maladaptation. Heredity 33, 623629.CrossRefGoogle Scholar
Crespi, E. J., & Denver, R. J. (2005). Ancient origins of human developmental plasticity. American Journal of Human Biology, 17, 4454.CrossRefGoogle ScholarPubMed
Cribbet, M. R., Williams, P. G., Gunn, H. E., & Rau, H. K. (2011). Effects of tonic and phasic respiratory sinus arrhythmia on affective stress responses. Emotion, 11, 188193.Google Scholar
Daly, M., & Wilson, M. (2005). Carpe diem: Adaptation and devaluing the future. Quarterly Review of Biology, 80, 5560.Google Scholar
Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 33, 2939.CrossRefGoogle Scholar
Decker, S. A., & Aggott, Z. (2013). Stress as adaptation? A test of the adaptive boost hypothesis among Batswana men. Evolution and Human Behavior, 34, 5560.Google Scholar
Del Giudice, M. (2009). Sex, attachment, and the development of reproductive strategies. Behavioral and Brain Sciences, 32, 167.CrossRefGoogle ScholarPubMed
Del Giudice, M., & Belsky, J. (2011). The development of life history strategies: Toward a multi-stage theory. In Buss, D. M. & Hawley, P. H. (Eds.), The evolution of personality and individual differences (pp. 154176). Oxford: Oxford University Press.Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592.Google Scholar
DeWitt, T. J., & Scheiner, S. M. (2004). Phenotypic plasticity: functional and conceptual approaches. Oxford: Oxford University Press.Google Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391.Google Scholar
Dickerson, S. S., Mycek, P. J., & Zaldivar, F. (2008). Negative social evaluation, but not mere social presence, elicits cortisol responses to a laboratory stressor task. Health Psychology, 27, 116121.Google Scholar
Dingemanse, N. J., & Wolf, W. (2010). Recent models for adaptive personality differences: A review. Philosophical Transactions of the Royal Society B, 365, 39473958.Google Scholar
Dishion, T. J., Ha, T., & Véronneau, M.-H. (2012). An ecological analysis of the effects of deviant peer clustering on sexual promiscuity, problem behavior, and childbearing from early adolescence to adulthood: An enhancement of the life history framework. Developmental Psychology, 8, 703717.Google Scholar
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., & Juffer, F. (2010). Effects of perinatal HIV infection and early institutional rearing on physical and cognitive development of children in Ukraine. Child Development, 81, 237251.CrossRefGoogle ScholarPubMed
Dodge, K. A. (1980). Social cognition and children's aggressive behavior. Child Development, 51, 162170.Google Scholar
Dodge, K. A., Pettit, G. S., Bates, J. E., & Valente, E. (1995). Social information-processing patterns partially mediate the effect of early physical abuse on later conduct problems. Journal of Abnormal Psychology, 104, 632643.Google Scholar
Durrant, R., & Ellis, B. J. (2013). Evolutionary psychology. In Nelson, R. J. & Mizumori, S. J. Y. (Eds.), Handbook of psychology: Vol. 3. Behavioral neuroscience (2nd ed., pp. 2651). Hoboken, NJ: Wiley.Google Scholar
Eaton, S. B., & Eaton, S. B. III (2003). An evolutionary perspective on human physical activity: Implications for health. Comparative Biochemistry and Physiology, 136A, 153159.Google Scholar
Eisen, M. L., Goodman, G. S., Qin, J., Davis, S., & Crayton, J. (2007). Maltreated children's memory: Accuracy, suggestibility, and psychopathology. Developmental Psychology, 43, 12751294.CrossRefGoogle ScholarPubMed
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920958.Google Scholar
Ellis, B. J., Bates, J. E., Dodge, K. A., Fergusson, D. M., Horwood, L. J., Pettit, G. S., et al. (2003). Does father absence place daughters at special risk for early sexual activity and teenage pregnancy? Child Development, 74, 801821.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
Ellis, B. J., Del Giudice, M., Dishion, T. J., Figueredo, A. J., Gray, P., Griskevicius, V., et al. (2012). The evolutionary basis of risky adolescent behavior: Implications for science, policy, and practice. Developmental Psychology, 48, 598623.Google Scholar
Ellis, B. J., Del Giudice, M., & Shirtcliff, E. A. (2013). Beyond allostatic load: The stress response system as a mechanism of conditional adaptation. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 251284). Hoboken, NJ: Wiley.Google Scholar
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk: The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20, 204268.CrossRefGoogle ScholarPubMed
Ellis, B. J., Jackson, J. J., & Boyce, W. T. (2006). The stress response system: Universality and adaptive individual differences. Developmental Review, 26, 175212.CrossRefGoogle Scholar
Ellis, B. J., McFadyen-Ketchum, S., Dodge, K. A., Pettit, G. S., & Bates, J. E. (1999). Quality of early family relationships and individual differences in the timing of pubertal maturation in girls: A longitudinal test of an evolutionary model. Journal of Personality and Social Psychology, 77, 387401.Google Scholar
Ellison, P. T. (2001). On fertile ground: A natural history of human reproduction. Cambridge, MA: Harvard University Press.Google Scholar
Essex, M. J., Shirtcliff, E. A., Burk, L. R., Ruttle, P. L., Klein, M. H., Slattery, M. J., et al. (2011). Influence of early life stress on later hypothalamic–pituitary–adrenal axis functioning and its covariation with mental health symptoms: A study of the allostatic process from childhood into adolescence. Development and Psychopathology, 23, 10391058.Google Scholar
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933.CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Evans, G. W., & Kim, P. (2007). Childhood poverty and health: Cumulative risk exposure and stress dysregulation. Psychological Science, 18, 953956.CrossRefGoogle ScholarPubMed
Evans, G. W., & Kim, P. (2012). Childhood poverty and young adults' allostatic load: The mediating role of childhood cumulative risk exposure. Psychological Science, 23, 979983.CrossRefGoogle Scholar
Evans, G. W., & Schamberg, M. A. (2009). Childhood poverty, chronic stress, and adult working memory. Proceedings of the National Academy of Sciences, 106, 65456549.Google Scholar
Figueredo, A. J., Vasquez, G., Brumbach, B. H., & Schneider, S. M. R. (2004). The heritability of life history strategy: The K-factor, covitality, and personality. Social Biology, 51, 121143.Google Scholar
Figueredo, A. J., Vásquez, G., Brumbach, B. H., Schneider, S., Sefcek, J. A., Tal, I. R., et al. (2006). Consilience and life history theory: From genes to brain to reproductive strategy. Developmental Review, 26, 243275.Google Scholar
Flinn, M. V. (2006). Evolution and ontogeny of the stress response to social challenges in the human child. Developmental Review, 26, 138174.Google Scholar
Flinn, M. V., Nepomnaschy, P. A., Muehlenbein, M. P., & Ponzi, D. (2011). Evolutionary functions of early social modulation of hypothalamic–pituitary–adrenal axis development in humans. Neuroscience & Biobehavioral Reviews, 35, 16111629.Google Scholar
Francis, D. D., & Kuhar, M. J. (2008). Frequency of maternal licking and grooming correlates negatively with vulnerability to cocaine and alcohol use in rats. Pharmacology Biochemistry and Behavior, 90, 497500.Google Scholar
Frankenhuis, W. E., & Del Giudice, M. (2012). When do adaptive developmental mechanisms yield maladaptive outcomes? Developmental Psychology, 48, 628642.Google Scholar
Frankenhuis, W. E., & de Weerth, C. (2013). Does early-life exposure to stress shape, or impair, cognition? Current Directions in Psychological Science, 22, 407412.Google Scholar
Gallup, A. C., O'Brien, D. T., & Wilson, D. S. (2011). Intrasexual peer aggression and dating behavior during adolescence: An evolutionary perspective. Aggressive Behavior, 37, 258267.Google Scholar
Gatzke-Kopp, L. M. (2011). The canary in the coalmine: The sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience & Biobehavioral Reviews, 35, 794803.Google Scholar
Geary, D. C. (2002). Sexual selection and human life history. Advances in Child Development and Behavior, 30, 41101.Google Scholar
Geronimus, A. T. (1992). The weathering hypothesis and the health of African-American women and infants: Evidence and speculations. Ethnicity and Disease, 2, 207221.Google ScholarPubMed
Geronimus, A. T. (1996). What teen mothers know. Human Nature, 7, 323352.CrossRefGoogle ScholarPubMed
Geronimus, A. T., Hicken, M. T., Pearson, J. A., Seashols, S. J., Brown, K. L., & Cruz, T. D. (2010). Do US Black women experience stress-related accelerated biological aging? Human Nature, 21, 1938.CrossRefGoogle ScholarPubMed
Gettler, L. T., McDade, T. W., & Kuzawa, C. W. (2011). Cortisol and testosterone in Filipino young adult men: Evidence for co-regulation of both hormones by fatherhood and relationship status. American Journal of Human Biology, 23, 609620.Google Scholar
Gilbert, P. (2002). Evolutionary approaches to psychopathology and cognitive therapy. Journal of Cognitive Psychotherapy: An International Quarterly, 16, 263294.Google Scholar
Goldstein, D. S., & Kopin, I. J. (2008). Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: A meta-analysis. Endocrine Regulations, 42, 111119.Google ScholarPubMed
Golub, M. S., Collman, G. W., Foster, P. D., Kiimmel, C. A., Rajpert-De Meyts, E., Reiter, E. O., et al. (2008). Public health implications of altered pubertal timing. Pediatrics 121(Suppl), S218S230.Google Scholar
Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847851.Google Scholar
Gunnar, M. R., Talge, N. M., & Herrera, A. (2009). Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology, 34, 953967.Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and psychopathology, 21, 6985.Google Scholar
Gunnar, M. R., & Vazquez, D. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (Vol. 2, pp. 533560). Hoboken, NJ: Wiley.Google Scholar
Hastings, P. D., Shirtcliff, E. A., Klimes-Dougan, B., Allison, A. L., Derose, L., Kendziora, K. T., et al. (2011). Allostasis and the development of internalizing and externalizing problems: Changing relations with physiological systems across adolescence. Development and Psychopathology, 23, 11491165.CrossRefGoogle ScholarPubMed
He, C., Zhang, C., Hunter, D. J., Hankinson, S. E., Louis, G. M. B., Hediger, M. L., et al. (2010). Age at menarche and risk of type 2 diabetes: Results from two large prospective cohort studies. American Journal of Epidemiology, 171, 334344.CrossRefGoogle Scholar
Hertzman, C. (1999). The biological embedding of early experience and its effects on health in adulthood. Annals of the New York Academy of Science, 896, 8595.CrossRefGoogle ScholarPubMed
Hertzman, C., & Wiens, M. (1996). Child development and long-term outcomes: A population health perspective and summary of successful interventions. Social Science and Medicine, 43, 10831095.Google Scholar
Hill, J. O. (2006). Understanding and addressing the epidemic of obesity: An energy balance perspective. Endocrine Review, 27, 750761.Google Scholar
Hill, K., & Kaplan, H. (1999). Life history traits in humans: Theory and empirical studies. Annual Review of Anthropology, 28, 397430.Google Scholar
Hrdy, S. B. (1999). Mother nature: A history of mothers, infants and natural selection. New York: Pantheon.Google Scholar
Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10, 459466.CrossRefGoogle ScholarPubMed
Joëls, M., Fernandez, G., & Roozendaal, B. (2011). Stress and emotional memory: A matter of timing. Trends in Cognitive Sciences, 15, 280288.CrossRefGoogle ScholarPubMed
Johns, S. E., Dickins, T. E., & Clegg, H. T. (2011). Teenage pregnancy and motherhood: How might evolutionary theory inform policy? Journal of Evolutionary Psychology, 9, 319.CrossRefGoogle Scholar
Juster, R.-P., Bizik, G., Picard, M., Arsenault-Lapierre, G., Sindi, S., Trepanier, L., et al. (2011). A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development. Development and Psychopathology, 23, 725776.CrossRefGoogle ScholarPubMed
Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35, 216.Google Scholar
Kaplan, H. S., & Gangestad, S. W. (2005). Life history theory and evolutionary psychology. In Buss, D. M. (Ed.), The handbook of evolutionary psychology (pp. 6895). Hoboken, NJ: Wiley.Google Scholar
Kaplan, H. S., & Lancaster, J. B. (2003). An evolutionary and ecological analysis of human fertility, mating patterns, and parental investment. In Wachter, K. W. & Bulatao, R. A. (Eds.), Offspring: Human fertility behavior in biodemographic perspective (pp. 170223). Washington, DC: National Academies Press.Google Scholar
Konner, M., & Eaton, S. B. (2010). Paleolithic nutrition: Twenty-five years later. Nutrition in Clinical Practice, 25, 594602.CrossRefGoogle ScholarPubMed
Korte, S. M., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience & Biobehavioral Reviews, 29, 338.Google Scholar
Kuo, L. E., Kitlinska, J. B., Tilan, J. U., Li, L., Baker, S. B., Johnson, M. D., et al. (2007). Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nature Medicine, 13, 803811.Google Scholar
Kuzawa, C. W., & Quinn, E. A. (2009). Developmental origins of adult function and health: Evolutionary hypotheses. Annual Review of Anthropology, 38, 131147.Google Scholar
Lakshman, R., Forouhi, N. G., Sharp, S. J., Luben, R., Bingham, S. A., Khaw, K.-T., et al. (2009). Early age at menarche associated with cardiovascular disease and mortality. The Journal of clinical Endocrinology and Metabolism, 94, 49535960.Google Scholar
Lass-Hennemann, J., Deuter, C. E., Kuehl, L. K., Schulz, A., Blumenthal, T. D., & Schachinger, H. (2010). Effects of stress on human mating preferences: Stressed individuals prefer dissimilar mates. Proceedings of the Royal Society B, 277, 21752183.Google Scholar
Laurent, H., & Powers, S. (2007). Emotion regulation in emerging adult couples: Temperament, attachment, and HPA response to conflict. Biological Psychology, 76, 6171.Google Scholar
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3, 799806.CrossRefGoogle ScholarPubMed
López, H. H., Hay, A. C., & Conklin, P. H. (2009). Attractive men induce testosterone and cortisol release in women. Hormones and Behavior, 56, 8492.CrossRefGoogle ScholarPubMed
Lovallo, W. R., & Sollers, J. J. III. (2007). Autonomic nervous system. In Fink, J. (Ed.), Encyclopedia of stress (2nd ed., pp. 282289). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Lupien, S. J., Ouellet-Morin, I., Hupbach, A., Tu, M. T., Buss, C., Walker, D., et al. (2006). Beyond the stress concept: Allostatic load: A developmental biological and cognitive perspective. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (2nd ed., pp. 578628). Hoboken, NJ: Wiley.Google Scholar
Martorell, G. A., & Bugental, D. B. (2006). Maternal variations in stress reactivity: Implications for harsh parenting practices with very young children. Journal of Family Psychology, 20, 641647.Google Scholar
Masten, C. L., Guyer, A. E., Hodgdon, H., McClure, E. B., Charney, D. S., Ernst, M., et al. (2008). Recognition of facial emotions among maltreated children with high rates of post-traumatic stress disorder. Child Abuse & Neglect, 32, 139153.Google Scholar
Mather, M., & Lighthall, N. R. (2012). Risk and reward are processed differently in decisions made under stress. Current Directions in Psychological Science, 21, 3641.Google Scholar
McCullough, M. E., Pedersen, E. J., Schroder, J. M., Tabak, B. A., & Carver, C. S. (2013). Harsh childhood environmental characteristics predict exploitation and retaliation in humans. Proceedings of the Royal Society B, 280. doi:10.1098/rspb.2012.2104Google Scholar
McEwen, B. S. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of the National Academy of Sciences, 109, 1718017185.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.Google Scholar
McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 42, 215.Google Scholar
Mead, H. K., Beauchaine, T. P., & Shannon, K. E. (2010). Neurobiological adaptations to violence across development. Development and Psychopathology, 22, 122.Google Scholar
Meaney, M. J. (2007). Environmental programming of phenotypic diversity in female reproductive strategies. Advances in Genetics, 59, 173215.Google Scholar
Meaney, M. J. (2010). Epigenetics and the biological definition of Gene × Environment interactions. Child Development, 81, 4179.Google Scholar
Menard, J. L., & Hakvoort, R. M. (2007). Variations of maternal care alter offspring levels of behavioural defensiveness in adulthood: Evidence for a threshold model. Behavioural Brain Research, 176, 302313.Google Scholar
Miller, G. E., & Chen, E. (2010). Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychological Science, 21, 848856.Google Scholar
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin, 137, 959997.Google Scholar
Mills-Koonce, W. R., Propper, C., Gariepy, J. L., Barnett, M., Moore, G. A., Calkins, S., et al. (2009). Psychophysiological correlates of parenting behavior in mothers of young children. Developmental Psychobiology, 51, 650661.Google Scholar
Møller, A. P., & Swaddle, J. (1997). Asymmetry, developmental stability and evolution. Oxford: Oxford University Press.Google Scholar
Morgan, C. A. III, Wang, S., Southwick, S. M., Rasmusson, A., Hazlett, G., Hauger, R. L., et al. (2000). Plasma neuropeptide-Y concentrations in humans exposed to military survival training. Biological Psychiatry, 47, 902909.Google Scholar
Mousseau, T. A., & Fox, C. W. (1998). The adaptive significance of maternal effects. Trends in Ecology & Evolution, 13, 403407.Google Scholar
Muehlenbein, M. P., & Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17, 527558.Google Scholar
Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrinology Review, 5, 2543.CrossRefGoogle ScholarPubMed
Nederhof, E., Ormel, J., & Oldehinkel, A. J. (in press). Attention style as a conditional adaptation. The TRAILS study. Psychological Science.Google Scholar
Nederhof, E., & Schmidt, M. V. (2012). Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiology & Behavior, 106, 691700.Google Scholar
Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest early intervention project. Science, 318, 19371940.Google Scholar
Nesse, R. M. (2001). On the difficulty of defining disease: A Darwinian perspective. Medicine, Health Care and Philosophy, 4, 3746.Google Scholar
Nesse, R. M. (2005). Natural selection and the regulation of defenses: A signal detection analysis of the smoke detector principle. Evolution and Human Behavior, 26, 88105.Google Scholar
Netherton, C., Goodyer, I., Tamplin, A., & Herbert, J. (2004). Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology, 33, 125140.Google Scholar
Nettle, D. (2010). Dying young and living fast: Variation in life history across English neighborhoods. Behavioral Ecology, 21, 387395.Google Scholar
Nettle, D., Coall, D. A., & Dickins, T. E. (2010). Birthweight and paternal involvement predict early reproduction in British women: Evidence from the National Child Development Study. American Journal of Human Biology, 22, 172179.Google Scholar
Nettle, D, Coall, D. A., & Dickins, T. E. (2011). Early-life conditions and age at first pregnancy in British women. Proceedings of the Royal Society B, 278, 1721–418.Google Scholar
Nettle, D., Frankenhuis, W. E., & Rickard, I. J. (2013). The evolution of predictive adaptive responses in human life history. Proceedings of the Royal Society B, 280. Retrieved from http://dx.doi.org/10.1098/rspb.2013.1343Google Scholar
Nyberg, C. H., Leonard, W. R., Tanner, S., McDade, T., Huanca, T., & Godoy, R. A. (2012). Diurnal cortisol rhythms and child growth: Exploring the life history consequences of HPA activation among the Tsimané. American Journal of Human Biology, 24, 730738.Google Scholar
Painter, R. C., Westendorp, R. G., de Rooij, S. R., Osmond, C., Barker, D. J., & Roseboom, T. J. (2008). Increased reproductive success of women after prenatal undernutrition. Human Reproduction, 23, 25912595.Google Scholar
Palmer, C. T., & Tilley, C. F. (1995). Sexual access to females as a motivation for joining gangs: An evolutionary approach. Journal of Sex Research, 32, 213217.Google Scholar
Parent, C. I., & Meaney, M. J. (2008). The influence of natural variations in maternal care on play fighting in the rat. Developmental Psychobiology, 50, 767776.Google Scholar
Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Placek, C. D., & Quinlan, R. J. (2012). Adolescent fertility and risky environments: A population-level perspective across the lifespan. Proceedings of the Royal Society B, 279, 40034008.Google Scholar
Pollak, S. D. (2008). Mechanisms linking early experience and the emergence of emotions. Current Directions in Psychological Science, 17, 370375.Google Scholar
Pollak, S. D., Messner, M., Kistler, D. J., & Cohn, J. F. (2009). Development of perceptual expertise in emotion recognition. Cognition, 110, 242247.CrossRefGoogle ScholarPubMed
Pollak, S. D., & Tolley-Schell, S. A. (2003). Selective attention to facial emotion in physically abused children. Journal of Abnormal Psychology, 112, 323338.Google Scholar
Pollak, S. D., Vardi, S., Bechner, A. M. P., & Curtin, J. J. (2005). Physically abused children's regulation of attention in response to hostility. Child Development, 76, 968977.Google Scholar
Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42, 123146.CrossRefGoogle ScholarPubMed
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143.Google Scholar
Quirin, M., Pruessner, J. C., & Kuhl, J. (2008). HPA system regulation and adult attachment anxiety: Individual differences in reactive and awakening cortisol. Psychoneuroendocrinology, 33, 581590.Google Scholar
Ramos, D., Victor, T., Seidl-de-Moura, M. L., & Daly, M. (2013). Future discounting by slum-dwelling youth versus university students in Rio de Janeiro. Journal of Research on Adolescence, 23, 95102.CrossRefGoogle Scholar
Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P.-O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. Phil. Trans. R. Soc. B, 365, 40514063.Google Scholar
Rieder, C., & Cicchetti, D. (1989). Organizational perspective on cognitive control functioning and cognitive–affective balance in maltreated children. Developmental Psychology, 25, 382393.Google Scholar
Rogosch, F. A., Dackis, M. N., & Cicchetti, D. (2011). Child maltreatment and allostatic load: Consequences for physical and mental health in children from low-income families. Development and Psychopathology, 23, 11071124.Google Scholar
Roney, J. R., Lukaszewski, A. W., & Simmons, Z. L. (2007). Rapid endocrine responses of young men to social interactions with young women. Hormones and Behavior, 52, 326333.Google Scholar
Rosmalen, J. G. M., & Oldehinkel, A. J. (2011). The role of group dynamics in scientific inconsistencies: A case study of a research consortium. PLoS Med, 8, e1001143.CrossRefGoogle ScholarPubMed
Sæther, B.-E. (1988). Pattern of covariation between life history traits of European birds. Nature, 33, 616617.CrossRefGoogle Scholar
Sakhai, S. A., Kriegsfeld, L. J., & Francis, D. D. (2011). Psychoneuroendocrinology, 36, 12171225.Google Scholar
Sandman, C. A., Davis, E. P., & Glynn, L. M. (2012). Prescient human fetuses thrive. Psychological Science, 23, 93100.Google Scholar
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google Scholar
Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer Associates.Google Scholar
Schwabe, L., & Wolf, O. T. (2013). Stress and multiple memory systems: From “thinking” to “doing.” Trends in Cognitive Science, 17, 6068.Google Scholar
Sefcek, J. A., & Figueredo, A. J. (2010). A life history model of human fitness indicators. Biodemography and Social Biology, 56, 4266.Google Scholar
Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol levels and externalizing behavior problems in youth. Development and Psychopathology, 17, 167184.Google Scholar
Shonkoff, J. P., Garner, A. S., Siegel, B. S., Dobbins, M. I., Earls, M. F., McGuinn, L., et al. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232e246.Google Scholar
Simpson, J. A., & Belsky, J. (2008). Attachment theory within a modern evolutionary framework. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of attachment: Theory, research, and clinical applications (2nd ed., pp. 131157). New York: Guilford Press.Google Scholar
Simpson, J. A., Griskevicius, V., Kuo, S. I., Sung, S., & Collins, W. A. (2012). Evolution, stress, and sensitive periods: The influence of unpredictability in early versus late childhood on sex and risky behavior. Developmental Psychology, 33, 674686.Google Scholar
Smallwood, P. D. (1996). An introduction to risk sensitivity: The use of Jensen's inequality to clarify evolutionary arguments of adaptation and constraint. American Zoologist, 36, 392401.Google Scholar
Starcke, K., & Brand, M. (2012). Decision making under stress: A selective review. Neuroscience & Biobehavioral Reviews, 36, 12281248.Google Scholar
Staton, L., El-Sheikh, M., & Buckhalt, J. A. (2009). Respiratory sinus arrhythmia and cognitive functioning in children. Developmental Psychobiology, 51, 249258.Google Scholar
Stearns, S. (1992). The evolution of life histories. Oxford: Oxford University Press.Google Scholar
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of life stress, cognition, and health (pp. 629650). Oxford: Oxford University Press.Google Scholar
Stout, D. M., Shackman, A. J., & Larson, C. L. (2013). Failure to filter: Anxious individuals show inefficient gating of threat from working memory. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00058Google Scholar
Sturge-Apple, M. L., Davies, P. T., Cicchetti, D., & Cummings, E. M. (2009). The role of mothers' and fathers' adrenocortical reactivity in spillover between interparental conflict and parenting practices. Journal of Family Psychology, 33, 215225.CrossRefGoogle Scholar
Sylwester, K., & Pawlowski, B. (2011). Daring to be darling: Attractiveness of risk takers as partners in long- and short-term sexual relationships. Sex Roles, 64, 695706.Google Scholar
Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In Barkow, J. H., Tooby, J., & Cosmides, L. (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19136). New York: Oxford University Press.Google Scholar
Van Buskirk, J., & Relyea, R. A. (1998). Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biological Journal of the Linnean Society, 65, 301328.Google Scholar
van Goozen, S. H. M., Faichild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133, 149182.Google Scholar
van Marle, H. J. F., Hermans, E. J., Qin, S., & Fernández, G. (2009). From specificity to sensitivity: How acute stress affects amygdala processing of biologically salient stimuli. Biological Psychiatry, 66, 649655.CrossRefGoogle ScholarPubMed
Volk, A. A., & Atkinson, J. A. (2013). Infant and child death in the human environment of evolutionary adaptation. Evolution and Human Behavior, 34, 182192.Google Scholar
Wells, J. C. K. (2012). Obesity as malnutrition: The role of capitalism in the obesity global epidemic. American Journal of Human Biology, 24, 261276.Google Scholar
Wenner, C. J., Bianchi, J., Figueredo, A. J.Rushton, J. P., & Jacobs, W. J. (2013). Life history theory and social deviance: The mediating role of executive function. Intelligence, 41, 102113.Google Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.Google Scholar
Wingfield, J. C., Breuner, C., Jacobs, J., Lynn, S., Maney, D., Ramenofsky, M., et al. (1998). Ecological bases of hormone-behavior interactions: The “emergency life history stage.” American Zoologist, 38, 191206.Google Scholar
Wingfield, J. C., & Kitaysky, A. S. (2002). Endocrine responses to unpredictable environmental events: Stress or anti-stress hormones? Integrative and Comparative Biology, 42, 600609.Google Scholar
Winterhalder, B. (2007). Risk and decision-making. In Dunbar, R. I. M. & Barrett, L. (Eds.), Oxford handbook of evolutionary psychology (pp. 433445). Oxford: Oxford University Press.Google Scholar
Worthman, C. M. (2009). Habits of the heart: Life history and the developmental neuroendocrinology of emotion. American Journal of Human Biology, 21, 772781.Google Scholar