Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T15:16:19.306Z Has data issue: false hasContentIssue false

Variation de la dimension relative en géométrie analytique p-adique

Published online by Cambridge University Press:  01 November 2007

Antoine Ducros*
Affiliation:
Laboratoire J.-A. Dieudonné, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice cedex 02, France (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be a complete, non-Archimedean valued field (the trivial absolute value is allowed) and let φ:XY be a morphism between two Berkovich k-analytic spaces; we show that, for any integer n, the set of points of X at which the local dimension of φ is at least equal to n is a Zariski-closed subset of X. In order to establish it, we first prove an analytic analogue of Zariski’s Main Theorem, and we also introduce, and study, the notion of an analytic system of parameters at a point.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2007