Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T19:26:17.486Z Has data issue: false hasContentIssue false

Upper semi-continuity of the Hilbert–Kunz multiplicity

Published online by Cambridge University Press:  02 February 2016

Ilya Smirnov*
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA email [email protected] Current address: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the Hilbert–Kunz multiplicity is upper semi-continuous in F-finite rings and algebras of essentially finite type over an excellent local ring.

Type
Research Article
Copyright
© The Author 2016 

References

Aberbach, I. M. and Enescu, F., Lower bounds for Hilbert–Kunz multiplicities in local rings of fixed dimension, Michigan Math. J. 57 (2008), 116; Special volume in honor of Melvin Hochster; MR 2492437 (2010h:13028).CrossRefGoogle Scholar
Blickle, M. and Enescu, F., On rings with small Hilbert–Kunz multiplicity, Proc. Amer. Math. Soc. 132 (2004), 25052509 (electronic); MR 2054773 (2005b:13029).Google Scholar
Brenner, H. and Monsky, P., Tight closure does not commute with localization, Ann. of Math. (2) 171 (2010), 571588; MR 2630050 (2011d:13005).Google Scholar
Enescu, F. and Shimomoto, K., On the upper semi-continuity of the Hilbert–Kunz multiplicity, J. Algebra 285 (2005), 222237; MR 2119113 (2005j:13017).Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965); MR 0199181 (33 #7330).CrossRefGoogle Scholar
Hochster, M., Foundations of tight closure, Lecture Notes for Math 711, Fall 2007, University of Michigan (2007); available at http://www.math.lsa.umich.edu/∼hochster/711F07/711.html.Google Scholar
Hochster, M. and Huneke, C., F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 162; MR 1273534 (95d:13007).Google Scholar
Huneke, C. and Swanson, I., Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336 (Cambridge University Press, Cambridge, 2006); MR 2266432 (2008m:13013).Google Scholar
Huneke, C. and Yao, Y., Unmixed local rings with minimal Hilbert–Kunz multiplicity are regular, Proc. Amer. Math. Soc. 130 (2002), 661665.CrossRefGoogle Scholar
Kunz, E., Characterizations of regular local rings of characteristic p, Amer. J. Math. 91 (1969), 772784; MR 0252389 (40 #5609).Google Scholar
Kunz, E., On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 9991013; MR 0432625 (55 #5612).Google Scholar
Matsumura, H., Commutative algebra, Mathematics Lecture Note Series, vol. 56, second edition (Benjamin/Cummings Publishing, Reading, MA, 1980); MR 575344 (82i:13003).Google Scholar
Monsky, P., The Hilbert–Kunz function, Math. Ann. 263 (1983), 4349; MR 697329 (84k:13012).Google Scholar
Monsky, P., Hilbert–Kunz functions in a family: point-S 4 quartics, J. Algebra 208 (1998), 343358; MR 1644019 (99k:13005).Google Scholar
Shepherd-Barron, N. I., On a problem of Ernst Kunz concerning certain characteristic functions of local rings, Arch. Math. (Basel) 31 (1978/79), 562564; MR 531569 (81e:13012).CrossRefGoogle Scholar
Tucker, K., F-signature exists, Invent. Math. 190 (2012), 743765; MR 2995185.Google Scholar
Watanabe, K. and Yoshida, K., Hilbert–Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), 295317; MR 1774769 (2001h:13032).Google Scholar