Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:37:36.609Z Has data issue: false hasContentIssue false

Unitary dual of GL(n) at archimedean places and global Jacquet–Langlands correspondence

Published online by Cambridge University Press:  08 June 2010

A. I. Badulescu
Affiliation:
Université Montpellier 2, Case Courrier 051, Place Eugène Bataillon, 34095 Montpellier cedex, France
D. Renard
Affiliation:
Centre de mathématiques Laurent Schwartz, École Polytechnique, 91 128 Palaiseau cedex, France (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a paper by Badulescu [Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), 383–438], results on the global Jacquet–Langlands correspondence, (weak and strong) multiplicity-one theorems and the classification of automorphic representations for inner forms of the general linear group over a number field were established, under the assumption that the local inner forms are split at archimedean places. In this paper, we extend the main local results of that article to archimedean places so that the above condition can be removed. Along the way, we collect several results about the unitary dual of general linear groups over ℝ, ℂ or ℍ which are of independent interest.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Adams, J. and Huang, J.-S., Kazhdan–Patterson lifting for GL(n,ℝ), Duke Math. J. 89 (1997), 423444.CrossRefGoogle Scholar
[2]Arthur, J., The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), 501554.CrossRefGoogle Scholar
[3]Arthur, J. and Clozel, L., Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120 (Princeton University Press, Princeton, NJ, 1989).CrossRefGoogle Scholar
[4]Badulescu, A. I., Correspondance de Jacquet–Langlands pour les corps locaux de caractéristique non nulle, Ann. Sci. École Norm. Sup. (4) 35 (2002), 695747.CrossRefGoogle Scholar
[5]Badulescu, A. I., Un théorème de finitude dans le spectre automorphe pour les formes intérieures de GLn sur un corps global, Bull. London Math. Soc. 37 (2005), 651657.CrossRefGoogle Scholar
[6]Badulescu, A. I., Jacquet–Langlands et unitarisabilité, J. Inst. Math. Jussieu 6 (2007), 349379.CrossRefGoogle Scholar
[7]Badulescu, A. I., Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), 383438. With an appendix by Neven Grbac.CrossRefGoogle Scholar
[8]Badulescu, A. I., Henniart, G., Lemaire, B. and Sécherre, V., Sur le dual unitaire de GL(r,D). Amer. J. Math., to appear.Google Scholar
[9]Badulescu, A. I. and Renard, D. A., Sur une conjecture de Tadić, Glas. Mat. Ser. III 39 (2004), 4954.CrossRefGoogle Scholar
[10]Barbasch, D. and Moy, A., A unitarity criterion for p-adic groups, Invent. Math. 98 (1989), 1937.CrossRefGoogle Scholar
[11]Baruch, E. M., A proof of Kirillov’s conjecture, Ann. of Math. (2) 158 (2003), 207252.CrossRefGoogle Scholar
[12]Bernstein, J. N., P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case), in Lie group representations II (College Park, MD, USA 1982–1983), Lecture Notes in Mathematics, vol. 1041 (Springer, Berlin, 1984), 50102.Google Scholar
[13]Borel, A. and Jacquet, H., Automorphic forms and automorphic representations, in Automorphic forms, representations and L-functions (Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 189207. With a supplement ‘On the notion of an automorphic representation’ by R. P. Langlands.Google Scholar
[14]Chenevier, G. and Renard, D., Characters of Speh representations and Lewis Carroll identity, Represent. Theory 12 (2008), 447452.CrossRefGoogle Scholar
[15]Clozel, L., Théorème d’Atiyah–Bott pour les variétés p-adiques et caractères des groupes réductifs, Mém. Soc. Math. France (N.S.) 15 (1984), 3964. Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983).CrossRefGoogle Scholar
[16]Deligne, P., Kazhdan, D. and Vignéras, M.-F., Représentations des algèbres centrales simplesp-adiques, in Representations of reductive groups over a local field, Travaux en Cours (Hermann, Paris, 1984), 33117.Google Scholar
[17]Flath, D., Decomposition of representations into tensor products, in Automorphic forms, representations and L-functions (Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 179183.Google Scholar
[18]Gel’fand, I. M., Graev, M. I. and Pyatetskii-Shapiro, I. I., Representation theory and automorphic functions, Generalized Functions, vol. 6 (Academic Press, Boston, MA, 1990). Translated from the Russian by K. A. Hirsch; reprint of the 1969 edition.Google Scholar
[19]Godement, R. and Jacquet, H., Zeta functions of simple algebras, Lecture Notes in Mathematics, vol. 260 (Springer, Berlin, 1972).CrossRefGoogle Scholar
[20]Harish-Chandra, , Harmonic analysis on reductive p-adic groups, Lecture Notes in Mathematics, vol. 162 (Springer, Berlin, 1970). Notes by G. van Dijk.CrossRefGoogle Scholar
[21]Jacquet, H., Generic representations, in Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Lecture Notes in Mathematics, vol. 587 (Springer, Berlin, 1977), 91101.Google Scholar
[22]Jacquet, H., Principal L-functions of the linear group, in Automorphic forms, representations and L-functions (Oregon State University, Corvallis, OR, 1977), Part 2, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 6386.Google Scholar
[23]Jacquet, H. and Langlands, R. P., Automorphic forms on GL(2), Lecture Notes in Mathematics, vol. 114 (Springer, Berlin, 1970).CrossRefGoogle Scholar
[24]Jacquet, H. and Shalika, J. A., On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), 777815.CrossRefGoogle Scholar
[25]Kirillov, A. A., Infinite-dimensional representations of the complete matrix group, Dokl. Akad. Nauk SSSR 144 (1962), 3739.Google Scholar
[26]Knapp, A. W., Representation theory of semisimple groups: an overview based on examples, Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 2001). Reprint of the 1986 original, Princeton Mathematical Series, vol. 36.Google Scholar
[27]Knapp, A. W. and Vogan, D. A. Jr, Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45 (Princeton University Press, Princeton, NJ, 1995).CrossRefGoogle Scholar
[28]Knapp, A. W. and Zuckerman, G. J., Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116 (1982), 389455.CrossRefGoogle Scholar
[29]Kostant, B., On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101184.CrossRefGoogle Scholar
[30]Langlands, R. P., On the notion of automorphic representation, in Automorphic forms, representations and L-functions (Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 203208.Google Scholar
[31]Langlands, R. P., Base change for GL(2), Annals of Mathematics Studies, vol. 96 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
[32]Mœglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4) 22 (1989), 605674.CrossRefGoogle Scholar
[33]Piatetski-Shapiro, I. I., Multiplicity one theorems, in Automorphic forms, representations and L-functions (Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 209212.Google Scholar
[34]Pierce, R. S., Associative algebras, Graduate Texts in Mathematics, vol. 88 (Springer, New York, 1982).CrossRefGoogle Scholar
[35]Ramakrishnan, D. and Valenza, R. J., Fourier analysis on number fields, Graduate Texts in Mathematics, vol. 186 (Springer, New York, 1999).CrossRefGoogle Scholar
[36]Renard, D., Représentations des groupes réductifs p-adiques, Cours Spécialisés, vol. 17 (Société Mathématiques de France, 2010).Google Scholar
[37]Sahi, S., Jordan algebras and degenerate principal series, J. Reine Angew. Math. 462 (1995), 118.Google Scholar
[38]Sécherre, V., Proof of the tadic conjecture U0 on the unitary dual of GL(m,D), J. Reine Angew. Math. 626 (2009), 187204.Google Scholar
[39]Shalika, J. A., The multiplicity one theorem for GLn, Ann. of Math. (2) 100 (1974), 171193.CrossRefGoogle Scholar
[40]Speh, B., Unitary representations of GL(n,R) with nontrivial (𝔤,K)-cohomology, Invent. Math. 71 (1983), 443465.CrossRefGoogle Scholar
[41]Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), 335382.CrossRefGoogle Scholar
[42]Tadić, M., Topology of unitary dual of non-Archimedean GL(n), Duke Math. J. 55 (1987), 385422.CrossRefGoogle Scholar
[43]Tadić, M., Induced representations of GL(n,A) for p-adic division algebras A, J. Reine Angew. Math. 405 (1990), 4877.Google Scholar
[44]Tadić, M., On characters of irreducible unitary representations of general linear groups, Abh. Math. Sem. Univ. Hamburg 65 (1995), 341363.CrossRefGoogle Scholar
[45]Tadić, M., Representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet–Langlands correspondence, Pacific J. Math. 223 (2006), 167200.CrossRefGoogle Scholar
[46]Tadić, M., and , in Automorphic forms and L-functions II: local aspects, Contemporary Mathematics, vol. 489 (American Mathematical Society, Providence, RI, 2009).Google Scholar
[47]Vogan, D. A. Jr, Gel’fand–Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), 7598.CrossRefGoogle Scholar
[48]Vogan, D. A. Jr, The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2) 109 (1979), 160.CrossRefGoogle Scholar
[49]Vogan, D. A. Jr, Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality, Duke Math. J. 49 (1982), 9431073.CrossRefGoogle Scholar
[50]Vogan, D. A., Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan–Lusztig conjecture in the integral case, Invent. Math. 71 (1983), 381417.CrossRefGoogle Scholar
[51]Vogan, D. A. Jr, The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), 449505.CrossRefGoogle Scholar
[52]Zelevinsky, A. V., Induced representations of reductive 𝔭-adic groups. II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165210.CrossRefGoogle Scholar