No CrossRef data available.
Published online by Cambridge University Press: 22 December 2021
In the present article, we study the following problem. Let $\boldsymbol {G}$ be a linear algebraic group over $\mathbb {Q}$, let $\Gamma$ be an arithmetic lattice, and let $\boldsymbol {H}$ be an observable $\mathbb {Q}$-subgroup. There is a $H$-invariant measure $\mu _H$ supported on the closed submanifold $H\Gamma /\Gamma$. Given a sequence $(g_n)$ in $G$, we study the limiting behavior of $(g_n)_*\mu _H$ under the weak-$*$ topology. In the non-divergent case, we give a rather complete classification. We further supplement this by giving a criterion of non-divergence and prove non-divergence for arbitrary sequence $(g_n)$ for certain large $\boldsymbol {H}$. We also discuss some examples and applications of our result. This work can be viewed as a natural extension of the work of Eskin–Mozes–Shah and Shapira–Zheng.