Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:52:11.278Z Has data issue: false hasContentIssue false

A support theorem for Hilbert schemes of planar curves, II

Published online by Cambridge University Press:  28 April 2021

Luca Migliorini
Affiliation:
Department of Mathematics, Università di Bologna, 40126Bologna, [email protected]
Vivek Shende
Affiliation:
Department of Mathematics, University of California, Berkeley, CA94720, [email protected]
Filippo Viviani
Affiliation:
Department of Mathematics, Università di Roma Tre, 00146Roma, [email protected]

Abstract

We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.

Type
Research Article
Copyright
© The Author(s) 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

L.M. is partially supported by PRIN project 2015 ‘Spazi di moduli e teoria di Lie’. During the (long) preparation of this paper L.M. was a member of the School of Mathematics of the Institute for Advanced Study in Princeton, partially funded by the Giorgio and Elena Petronio fellowship. V. S. is supported by the NSF grant DMS-1406871, and by a Sloan fellowship. F.V. is partially supported by PRIN ‘Geometria delle varietà algebriche’ and GNSAGA-INdAM.

References

Abbes, A., Réduction semi-stable des courbes d'après Artin, Deligne, Grothendieck, Mumford, Saito, Winters, in Courbes semi-stables et groupe fondamental en géométrie algébrique (Birkhäuser, 2000), 59110.Google Scholar
Alexeev, V., Compactified Jacobians and Torelli map, Publ. Res. Inst. Math. Sci. 40 (2004), 12411265.CrossRefGoogle Scholar
Altman, A., Iarrobino, A. and Kleiman, S., Irreducibility of the Compactified Jacobian, in Real and complex singularities: Proceedings of the ninth Nordic summer school (Sijthoff and Noordhoff, 1977), 112.Google Scholar
Altman, A. and Kleiman, S., Compactifying the Picard scheme. II, Amer. J. Math. 101 (1979), 1041.CrossRefGoogle Scholar
Altman, A. and Kleiman, S., Compactifying the Picard scheme, Adv. Math. 35 (1980), 50112.CrossRefGoogle Scholar
Beauville, A., Counting rational curves on K3 surfaces, Duke Math. J. 97 (1999), 99108.CrossRefGoogle Scholar
Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astèrisque 100 (1982), 5171.Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21 (Springer, 1990).CrossRefGoogle Scholar
Cattani, E., Kaplan, A. and Schmid, W., $L^2$ and intersection cohomology for a polarized variation of Hodge structure, Invent. Math. 87 (1987), 217252.CrossRefGoogle Scholar
Chaudouard, P.-H. and Laumon, G., Le lemme fondamental pondéré I : constructions géométriques, Compos. Math. 146 (2010), 14161506.CrossRefGoogle Scholar
Chuang, W.-Y., Diaconescu, D.-E. and Pan, G., BPS states and the P = W conjecture, in Moduli spaces, London Mathematical Society Lecture Note Series, vol. 411 (Cambridge University Press, 2014), 132150.CrossRefGoogle Scholar
de Cataldo, M., Hausel, T. and Migliorini, L., Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$, Ann. of Math. (2) 173 (2012), 13291407.CrossRefGoogle Scholar
Diaconescu, D.-E., Hua, Z. and Soibelman, Y., HOMFLY polynomials, stable pairs and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 6 (2012), 517600.CrossRefGoogle Scholar
Diaconescu, D.-E., Shende, V. and Vafa, C., Large N duality, lagrangian cycles, and algebraic knots, Comm. Math. Phys. 319 (2013), 813863.CrossRefGoogle Scholar
Diaz, S. and Harris, J., Ideals associated to deformations of singular plane curves, Trans. Amer. Math. Soc. 309 (1988), 433468.CrossRefGoogle Scholar
D'Souza, C., Compactification of generalised Jacobians, Proc. Indian Acad. Sci. Math. Sci. 88 (1979), 419457.Google Scholar
Esteves, E., Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc. 353 (2001), 30453095.CrossRefGoogle Scholar
Fantechi, B., Göttsche, L. and van Straten, D., Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom. 8 (1999), 115133.Google Scholar
Flenner, H., Ein Kriterium für die Offenheit der Versalität, Math. Z. 178 (1981), 449473.CrossRefGoogle Scholar
Gieseker, D., On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1977), 4560.CrossRefGoogle Scholar
Gorsky, E., Oblomkov, A., Rasmussen, J. and Shende, V., Torus knots and the rational DAHA, Duke Math. J. 163 (2014), 27092794.CrossRefGoogle Scholar
Göttsche, L. and Shende, V., Refined curve counting on complex surfaces, Geom. Topol. 18 (2014), 22452307.CrossRefGoogle Scholar
Göttsche, L. and Shende, V., The $\chi _y$ genera of relative Hilbert schemes for linear systems on Abelian and K3 surfaces, Algebr. Geom. 2 (2015), 405421.CrossRefGoogle Scholar
Greuel, G.-M., Lossen, C. and Shustin, E., Introduction to singularities and deformations (Springer, 2007).Google Scholar
Gopakumar, R. and Vafa, C., M-theory and topological strings I & II, Preprint (1998), arXiv:hep-th/9809187 and arXiv:hep-th/9812187.Google Scholar
Hosono, S., Saito, M.-H. and Takahashi, A., Relative Lefschetz action and BPS state counting, Int. Math. Res. Not. IMRN 2001 (2001), 783816.CrossRefGoogle Scholar
Katz, S., Klemm, A. and Vafa, C., M-theory, topological strings, and spinning black holes, Adv. Theor. Math. Phys. 3 (1999), 14451537.CrossRefGoogle Scholar
Kleiman, S. and Shende, V., On the Göttsche threshold, in A celebration of algebraic geometry, Clay Mathematics Proceedings, vol. 18 (American Mathematical Society, Providence, RI, 2013), 429449.Google Scholar
Kool, M., Shende, V. and Thomas, R., A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011), 397406.CrossRefGoogle Scholar
Kool, M. and Thomas, R., Reduced classes and curve counting on surfaces I: theory, Algebr. Geom. 1 (2014), 334383.CrossRefGoogle Scholar
Laumon, G., Transformation de Fourier, constantes d'equations fonctionelles et conjecture de Weil, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 131210.CrossRefGoogle Scholar
Laumon, G., Fibres de Springer et Jacobiennes compactifiées, in Algebraic geometry and number theory, Progress in Mathematics, vol. 253 (Birkhäuser, 2006), 515563.CrossRefGoogle Scholar
Liu, Q., Algebraic geometry and arithmetic curves (Oxford University Press, 2002).Google Scholar
Macdonald, I., The poincare polynomial of a symmetric product, Math. Proc. Cambridge Philos. Soc. 58 (1962), 563568.CrossRefGoogle Scholar
Maulik, D., Stable pairs and the HOMFLY polynomial, Invent. Math. 204 (2016), 787831.CrossRefGoogle Scholar
Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R., Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006), 12631285.CrossRefGoogle Scholar
Maulik, D. and Yun, Z., Macdonald formula for curves with planar singularities, J. Reine Angew. Math. 694 (2014), 2748.Google Scholar
Melo, M., Rapagnetta, A. and Viviani, F., Fine compactified Jacobians of reduced curves, Trans. Amer. Math. Soc. 369 (2017), 53415402.CrossRefGoogle Scholar
Melo, M., Rapagnetta, A. and Viviani, F., Fourier-Mukai and autoduality for compactified Jacobians I, J. Reine Angew. Math. 755 (2019), 165.CrossRefGoogle Scholar
Melo, M., Rapagnetta, A. and Viviani, F., Fourier-Mukai and autoduality for compactified Jacobians II, Geom. Topol. 23 (2019), 23352395.CrossRefGoogle Scholar
Melo, M. and Viviani, F., Fine compactified Jacobians, Math. Nachr. 285 (2012), 9971031.CrossRefGoogle Scholar
Migliorini, L. and Shende, V., A support theorem for Hilbert schemes of planar curves, J. Eur. Math. Soc. (JEMS) 15 (2013), 23532367.CrossRefGoogle Scholar
Migliorini, L. and Shende, V., Higher discriminants and the topology of algebraic maps, Algebr. Geom. 5 (2018), 114130.CrossRefGoogle Scholar
Milne, J., Étale Cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, 1980).Google Scholar
Ngô, B. C., Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), 399453.CrossRefGoogle Scholar
Ngô, B. C., Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1169.CrossRefGoogle Scholar
Oblomkov, A., Rasmussen, J. and Shende, V., The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, Geom. Topol. 22 (2018), 645691.CrossRefGoogle Scholar
Oblomkov, A. and Shende, V., The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, Duke Math. J. 161 (2012), 12771303.CrossRefGoogle Scholar
Oblomkov, A. and Yun, Z., Geometric representations of graded and rational Cherednik algebras, Adv. Math. 292 (2016), 601706.CrossRefGoogle Scholar
Oda, T. and Seshadri, C. S., Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc. 253 (1979), 190.CrossRefGoogle Scholar
Pandharipande, R. and Thomas, R., Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), 407447.CrossRefGoogle Scholar
Pandharipande, R. and Thomas, R., Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010), 267297.CrossRefGoogle Scholar
Ran, Z., A note on Hilbert schemes of nodal curves, J. Algebra 292 (2005), 429446.CrossRefGoogle Scholar
Rennemo, J., Homology of Hilbert schemes of a locally planar curve, J. Eur. Math. Soc. (JEMS) 20 (2018), 16291654.CrossRefGoogle Scholar
Saito, M., Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), 221333.CrossRefGoogle Scholar
Sernesi, E., Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334 (Springer, 2006).Google Scholar
Seshadri, C. S., Fibrés vectoriels sur les courbes algébriques, Astérisque 96 (1982).Google Scholar
Shende, V., Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation, Compos. Math. 148 (2012), 531547.CrossRefGoogle Scholar
Simpson, C., Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. Inst. Hautes Études Sci. 79 (1994), 47129.CrossRefGoogle Scholar
Teissier, B., Résolution simultanée – I. Famille de courbes, in Séminaire sur les singularités des surfaces, Lecture Notes in Mathematics, vol. 777 (Springer, 1980).Google Scholar
Warmt, T., Gorenstein-Dualität und topologische Invarianten von Singularitäten, PhD Dissertation, University of Mainz (2002).Google Scholar
Yau, S.-T. and Zaslow, E., BPS states, string duality, and nodal curves on K3, Nuclear Phys. B 471 (1996), 503512.CrossRefGoogle Scholar