Article contents
Stable maps and stable quotients
Published online by Cambridge University Press: 17 July 2014
Abstract
We analyze the relationship between two compactifications of the moduli space of maps from curves to a Grassmannian: the Kontsevich moduli space of stable maps and the Marian–Oprea–Pandharipande moduli space of stable quotients. We construct a moduli space which dominates both the moduli space of stable maps to a Grassmannian and the moduli space of stable quotients, and equip our moduli space with a virtual fundamental class. We relate the virtual fundamental classes of all three moduli spaces using the virtual push-forward formula. This gives a new proof of a theorem of Marian–Oprea–Pandharipande: that enumerative invariants defined as intersection numbers in the stable quotient moduli space coincide with Gromov–Witten invariants.
- Type
- Research Article
- Information
- Copyright
- © The Author 2014
References
- 1
- Cited by