Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T04:36:12.388Z Has data issue: false hasContentIssue false

Rigid subsets of symplectic manifolds

Published online by Cambridge University Press:  01 May 2009

Michael Entov
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel (email: [email protected])
Leonid Polterovich
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the works of P. Albers and P. Biran-O. Cornea) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Aarnes, J. F., Quasi-states and quasi-measures, Adv. Math. 86 (1991), 4167.CrossRefGoogle Scholar
[2]Albers, P., On the extrinsic topology of Lagrangian submanifolds, Int. Math. Res. Not. IMRN 38 (2005), 23412371.CrossRefGoogle Scholar
[3]Albers, P. and Frauenfelder, U., A non-displaceable Lagrangian torus in T *𝕊2, Comm. Pure Appl. Math. 61 (2008), 10461051.CrossRefGoogle Scholar
[4]Arnold, V. I., On a characteristic class entering into conditions of quantization, (Russian) Funkcional. Anal. i Priložen. 1 (1967), 114.CrossRefGoogle Scholar
[5]Arnold, V. I., Some remarks on symplectic monodromy of Milnor fibrations, in The Floer memorial volume, 99–103, Progress in Mathematics, vol. 133 (Birkhäuser, Basel, 1995).Google Scholar
[6]Atiyah, M. F., Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc. 14 (1981), 115.CrossRefGoogle Scholar
[7]Barge, J. and Ghys, E., Cocycles d’Euler et de Maslov, Math. Ann. 294 (1992), 235265.CrossRefGoogle Scholar
[8]Beauville, A., Quantum cohomology of complete intersections, Zh. Mat. Fiz. Anal. Geom. 2 (1995), 384398.Google Scholar
[9]Biran, P. and Cieliebak, K., Symplectic topology on subcritical manifolds, Comment. Math. Helv. 76 (2001), 712753.CrossRefGoogle Scholar
[10]Biran, P., Entov, M. and Polterovich, L., Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math. 6 (2004), 793802.CrossRefGoogle Scholar
[11]Biran, P., Geometry of symplectic intersections, in Proc. Int. congress of mathematicians, vol. II, Beijing, 20–28 August 2002, ed. T. Li (Higher Education Press, Beijing, 2002), 241255.Google Scholar
[12]Biran, P., Symplectic topology and algebraic families, in European congress of mathematics, Proc. 4th congress (4ECM), Stockholm, 27 June–2 July 2004, ed. A. Laptev (European Mathematical Society, Zürich, 2005), 827836.Google Scholar
[13]Biran, P., Lagrangian non-intersections, Geom. Funct. Anal. 16 (2006), 279326.CrossRefGoogle Scholar
[14]Biran, P. and Cornea, O., Quantum structures for Lagrangian submanifolds, Preprint (2007), arXiv:0708.4221.Google Scholar
[15]Biran, P. and Cornea, O., Rigidity and uniruling for Lagrangian submanifolds (2008), arXiv:0808.2440.Google Scholar
[16]Cho, C.-H., Holomorphic disc, spin structures and Floer cohomology of the Clifford torus, Int. Math. Res. Not. IMRN 35 (2004), 18031843.CrossRefGoogle Scholar
[17]Cho, C.-H., Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle, J. Geom. Phys. 58 (2008), 14651476.CrossRefGoogle Scholar
[18]Conley, C. and Zehnder, E., Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207253.CrossRefGoogle Scholar
[19]de Gosson, M., de Gosson, S. and Piccione, P., On a product formula for the Conley–Zehnder index of symplectic paths and its applications, Ann. Global Anal. Geom. 34 (2008), 163183.CrossRefGoogle Scholar
[20]Delzant, T., Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), 315339.CrossRefGoogle Scholar
[21]Donaldson, S. K., Polynomials, vanishing cycles and Floer homology, in Mathematics: frontiers and perspectives eds V. Arnold, M. Atiyah, P. Lax and B. Mazur (American Mathematical Society, Providence, RI, 2000), 5564.Google Scholar
[22]Entov, M. and Polterovich, L., Calabi quasimorphism and quantum homology, Int. Math. Res. Not. IMRN 30 (2003), 16351676.CrossRefGoogle Scholar
[23]Entov, M. and Polterovich, L., Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006), 7599.CrossRefGoogle Scholar
[24]Entov, M. and Polterovich, L., Symplectic quasi-states and semi-simplicity of quantum homology, in Toric Topology, Contemporary Mathematics, vol. 460 (American Mathematical Society, Providence, RI, 2008), 4770.CrossRefGoogle Scholar
[25]Entov, M., Polterovich, L. and Zapolsky, F., Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Quarterly 3 (2007), 10371055, part 1.CrossRefGoogle Scholar
[26]Floer, A., Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), 575611.CrossRefGoogle Scholar
[27]Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian Floer theory on compact toric manifolds I, Preprint (2008), arXiv:0802.1703.Google Scholar
[28]Futaki, A., An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), 437443.CrossRefGoogle Scholar
[29]Guillemin, V. and Sternberg, S., Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491513.CrossRefGoogle Scholar
[30]Hirzebruch, F., Topological methods in algebraic geometry (Springer-Verlag, Berlin, 1966).Google Scholar
[31]Hofer, H. and Salamon, D., Floer homology and Novikov rings, The Floer memorial volume, Progress in Mathematics, vol. 133 (Birkhäuser, Basel, 1995), 483524.CrossRefGoogle Scholar
[32]Karshon, Y., Appendix to the paper ‘Symplectic packings and algebraic geometry’ by D. McDuff and L. Polterovich, Invent. Math. 115 (1994), 431434.CrossRefGoogle Scholar
[33]Lang, S., Algebra, third edition (Springer-Verlag, Berlin, 2002).CrossRefGoogle Scholar
[34]Leray, J., Lagrangian Analysis and Quantum Mechanics (The MIT Press, Cambridge, Massachusetts, 1981).Google Scholar
[35]Lerman, E., Symplectic cuts, Math. Res. Lett. 2 (1995), 247258.CrossRefGoogle Scholar
[36]Liu, G., Associativity of quantum multiplication, Comm. Math. Phys. 191 (1998), 265282.CrossRefGoogle Scholar
[37]Mabuchi, T., Einstein–Kähler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math. 24 (1987), 705737.Google Scholar
[38]McDuff, D., Hamiltonian 𝕊1-manifolds are uniruled, Duke Math. J. 146 (2009), 449507.CrossRefGoogle Scholar
[39]McDuff, D. and Salamon, D., J-holomorphic curves and symplectic topology (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
[40]Oh, Y.-G., Symplectic topology as the geometry of action functional I, J. Differential Geom. 46 (1997), 499577.CrossRefGoogle Scholar
[41]Oh, Y.-G., Symplectic topology as the geometry of action functional II, Comm. Anal. Geom. 7 (1999), 155.CrossRefGoogle Scholar
[42]Oh, Y.-G., Addendum to: ‘Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I’, Comm. Pure Appl. Math. 48 (1995), 12991302.CrossRefGoogle Scholar
[43]Oh, Y.-G., Construction of spectral invariants of Hamiltonian diffeomorphisms on general symplectic manifolds, in The breadth of symplectic and Poisson geometry, Progess in Mathematics, vol. 232, eds J. E. Marsden and T. S. Ratin (Birkhäuser, Boston, Inc., Boston, MA, 2005), 525570.Google Scholar
[44]Ostrover, Y., Calabi quasi-morphisms for some non-monotone symplectic manifolds, Algebr. Geom. Topol. 6 (2006), 405434.CrossRefGoogle Scholar
[45]Piunikhin, S., Salamon, D. and Schwarz, M., Symplectic Floer–Donaldson theory and quantum cohomology, in Contact and Symplectic Geometry, Publications of the Newton Institute, vol. 8 (Cambridge University Press, Cambridge, 1996), 171200.Google Scholar
[46]Polterovich, L., The geometry of the group of symplectic diffeomorphisms (Birkhäuser, Basel, 2001).CrossRefGoogle Scholar
[47]Polterovich, L., Hamiltonian loops and Arnold’s principle, Amer. Math. Soc. Transl. Ser. 2 180 (1997), 181187.Google Scholar
[48]Polterovich, L., Hofer’s diameter and Lagrangian intersections, Int. Math. Res. Not. IMRN 4 (1998), 217223.CrossRefGoogle Scholar
[49]Polterovich, L. and Rudnick, Z., Kick stability in groups and dynamical systems, Nonlinearity 14 (2001), 13311363.CrossRefGoogle Scholar
[50]Py, P., Quasi-morphismes et invariant de Calabi, Ann. Sci. Éc. Norm. Supér. (4) 39 (2006), 177195.CrossRefGoogle Scholar
[51]Py, P., Quasi-morphismes et diffeomorphismes Hamiltoniens, PhD thesis, ENS-Lyon (2008).Google Scholar
[52]Robbin, J. and Salamon, D., The Maslov index for paths, Topology 32 (1993), 827844.CrossRefGoogle Scholar
[53]Ruan, Y. and Tian, G., A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269278.CrossRefGoogle Scholar
[54]Ruan, Y. and Tian, G., A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), 259367.CrossRefGoogle Scholar
[55]Salamon, D. and Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 13031360.CrossRefGoogle Scholar
[56]Salamon, D., Lectures on Floer homology, in Symplectic geometry and topology, Park City, UT, 29 June–19 July 1997, IAS/Park City Mathematics Series, vol. 7, eds Y. Eliashberg and L. Traynor (American Mathematical Society, Providence, RI, 1999), 143229.Google Scholar
[57]Schwarz, M., On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000), 419461.CrossRefGoogle Scholar
[58]Seidel, P., Floer homology and the symplectic isotopy problem, PhD thesis, Oxford University (1997).Google Scholar
[59]Seidel, P., Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), 103149.CrossRefGoogle Scholar
[60]Seidel, P., Vanishing cycles and mutation, in European Congress of Mathematics, vol. II, Barcelona, 10–14 July 2000, Progress in Mathematics, vol. 202, eds C. Casacuberta, R. M. Miró-Roig, J. Verdera and S. Xambó-Descamps (Birkhäuser, Basel, 2001), 6585.CrossRefGoogle Scholar
[61]Usher, M., Spectral numbers in Floer theories, Compositio Math. 144 (2008), 15811592.CrossRefGoogle Scholar
[62]Viterbo, C., Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685710.CrossRefGoogle Scholar
[63]van der Waerden, B., Algebra, vol. 2 (Springer-Verlag, Berlin, 1991).Google Scholar
[64]Wang, X.-J. and Zhu, X., Kähler–Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), 87103.CrossRefGoogle Scholar
[65]Weinstein, A., Cohomology of symplectomorphism groups and critical values of Hamiltonians, Math. Z. 201 (1989), 7582.CrossRefGoogle Scholar
[66]Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surv. Differ. Geom. 1 (1991), 243310.CrossRefGoogle Scholar