Published online by Cambridge University Press: 04 December 2007
In this paper we establish Riemann–Roch and Lefschtez–Riemann–Roch theorems for arbitrary proper maps of finite cohomological dimension between algebraic stacks in the sense of Artin. The Riemann–Roch theorem is established as a natural transformation between the G-theory of algebraic stacks and topological G-theory for stacks: we define the latter as the localization of G-theory by topological K-homology. The Lefschtez–Riemann–Roch is an extension of this including the action of a torus for Deligne–Mumford stacks. This generalizes the corresponding Riemann–Roch theorem (Lefschetz–Riemann–Roch theorem) for proper maps between schemes (that are also equivariant for the action of a torus, respectively) making use of some fundamental results due to Vistoli and Toen. A key result established here is that topological G-theory (as well as rational G-theory) has cohomological descent on the isovariant étale site of an algebraic stack. This extends cohomological descent for topological G-theory on schemes as proved by Thomason.