Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T14:35:10.593Z Has data issue: false hasContentIssue false

Quantum Langlands duality of representations of ${\mathcal{W}}$-algebras

Published online by Cambridge University Press:  04 October 2019

Tomoyuki Arakawa
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan email [email protected]
Edward Frenkel
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720, USA email [email protected]

Abstract

We prove duality isomorphisms of certain representations of ${\mathcal{W}}$-algebras which play an essential role in the quantum geometric Langlands program and some related results.

Type
Research Article
Copyright
© The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aomoto, K. and Kita, M., Theory of hypergeometric functions, Springer Monographs in Mathematics (Springer, Tokyo, 2011), with an appendix by Toshitake Kohno, translated from the Japanese by Kenji Iohara.Google Scholar
Arakawa, T., Vanishing of cohomology associated to quantized Drinfeld–Sokolov reduction , Int. Math. Res. Not. IMRN 15 (2004), 730–767.Google Scholar
Arakawa, T., Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture , Duke Math. J. 130 (2005), 435–478.Google Scholar
Arakawa, T., Representation theory of W-algebras , Invent. Math. 169 (2007), 219–320.Google Scholar
Arakawa, T., Two-sided BGG resolution of admissible representations , Represent. Theory 18 (2014), 183–222.Google Scholar
Arakawa, T., Introduction to W-algebras and their representation theory, Springer INdAM Series, vol. 19 (Springer, 2017).Google Scholar
Arakawa, T., Creutzig, T. and Linshaw, A. R., W-algebras as coset vertex algebras , Invent. Math. 218 (2019), 145–195.Google Scholar
Bouwknegt, P., McCarthy, J. and Pilch, K., Quantum group structure in the Fock space resolutions of sl̂(n) representations , Comm. Math. Phys. 131 (1990), 125–155.Google Scholar
Creutzig, T. and Gaiotto, D., Vertex algebras for S-duality, Preprint (2017), arXiv:1708.00875 [hep-th].Google Scholar
de Boer, J. and Tjin, T., The relation between quantum W-algebras and Lie algebras , Comm. Math. Phys. 160 (1994), 317–332.Google Scholar
Feigin, B. and Frenkel, E., Quantization of the Drinfeld–Sokolov reduction , Phys. Lett. B 246 (1990), 75–81.Google Scholar
Feigin, B. L. and Frenkel, E. V., Affine Kac–Moody algebras and semi-infinite flag manifolds , Comm. Math. Phys. 128 (1990), 161–189.Google Scholar
Feigin, B. and Frenkel, E., Duality in W-algebras , Int. Math. Res. Not. IMRN 1991(6) (1991), 75–82.Google Scholar
Feigin, B. and Frenkel, E., Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras , Int. J. Mod. Phys. A7 (1992), 197–215.Google Scholar
Feigin, B. and Frenkel, E., Integrals of motion and quantum groups , in Proc. C.I.M.E. school integrable systems and quantum groups, Italy, June 1993, Lecture Notes in Mathematics, vol. 1620 (Springer, Berlin, 1996).Google Scholar
Feigin, B. and Frenkel, E., Integrable hierarchies and Wakimoto modules , in Differential topology, infinite-dimensional Lie algebras, and applications, eds Astashkevich, A. and Tabachnikov, S. (American Mathematical Society, 1999), 27–60; D. B. Fuchs 60th Anniversary Collection.Google Scholar
Feigin, B. and Fuchs, D., Representations of Lie groups and related topics, eds Vershik, A. M. and Zhelobenko, D. P. (Gordon and Breach, London, 1990), 465–554.Google Scholar
Frenkel, E., 𝓩-algebras and Langlands–Drinfeld correspondence , in New symmetry principles in quantum field theory, eds Fröhlich, J., ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P. K. and Stora, R. (Plenum Press, New York, 1992), 433–447.Google Scholar
Frenkel, E., Determinant formulas for the free field representations of the Virasoro and Kac–Moody algebras , Phys. Lett. B 286 (1992), 71–77.Google Scholar
Frenkel, E., Wakimoto modules, opers and the center at the critical level , Adv. Math. 195 (2005), 297–404.Google Scholar
Frenkel, E. and Ben-Zvi, D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, vol. 88, second edition (American Mathematical Society, Providence, RI, 2004).Google Scholar
Frenkel, E. and Gaiotto, D., Quantum Langlands dualities of boundary conditions, D-modules, and conformal blocks, Preprint (2018), arXiv:1805.00203.Google Scholar
Frenkel, E. and Gaitsgory, D., Affine Kac–Moody algebras and local geometric Langlands correspondence , in Algebraic geometry and number theory, Progress in Mathematics, vol. 253 (BirkhĂ€user, Boston, MA, 2006), 69–260.Google Scholar
Gaitsgory, D., Quantum Langlands correspondence, Preprint (2016), arXiv:1601.05279 [math.AG].Google Scholar
Gaitsgory, D., The master chiral algebra. Gauge theory, geometric Langlands and vertex operator algebras, Perimeter Institute for Theoretical Physics (2018),https://www.perimeterinstitute.ca/videos/master-chiral-algebra.Google Scholar
Kac, V., Contravariant form for infinite dimensional Lie algebras and superalgebras , Lecture Notes in Phys. 94 (1979), 441–445.Google Scholar
Kashiwara, M. and Tanisaki, T., Kazhdan–Lusztig conjecture for affine Lie algebras with negative level , Duke Math. J. 77 (1995), 21–62.Google Scholar
Li, H., The physics superselection principle in vertex operator algebra theory , J. Algebra 196 (1997), 436–457.Google Scholar
Malikov, F., Verma modules over Kac–Moody algebras of rank 2 , Algebra i Analiz 2 (1990), 65–84.Google Scholar
Schechtman, V. and Varchenko, A., Quantum groups and homology of local systems , in Algebraic geometry and analytic geometry, ICM-90 satellite conference proceedings (Springer, 1991), 182–197.Google Scholar
Stoyanovsky, A. V., Quantum Langlands duality and conformal field theory, Preprint (2006),arXiv:math/0610974 [math.AG].Google Scholar
Tsuchiya, A. and Kanie, Y., Fock space representations of the Virasoro algebra. Intertwining operators , Publ. Res. Inst. Math. Sci. 22 (1986), 259–327.Google Scholar
Varchenko, A., Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups (World Scientific, 1995).Google Scholar
Voronov, A. A., Semi-infinite induction and Wakimoto modules , Amer. J. Math. 121 (1999), 1079–1094.Google Scholar