Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T02:10:26.464Z Has data issue: false hasContentIssue false

Quantifying residual finiteness of arithmetic groups

Published online by Cambridge University Press:  19 March 2012

Khalid Bou-Rabee
Affiliation:
Department of Mathematics, University of Chicago, 5734 University Ave., Chicago, IL 60637, USA (email: [email protected])
Tasho Kaletha
Affiliation:
Department of Mathematics, University of Chicago, 5734 University Ave., Chicago, IL 60637, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The normal residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. We show that any S-arithmetic subgroup of a higher rank Chevalley group G has normal residual finiteness growth ndim (G).

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[Alp87]Alperin, R. C., An elementary account of Selberg’s lemma, Enseign. Math. (2) 33 (1987), 269273.Google Scholar
[Bou10]Bou-Rabee, K., Quantifying residual finiteness, J. Algebra 323 (2010), 729737.CrossRefGoogle Scholar
[SGA3]Demazure, M. and Grothendieck, A., Schémas en groupes I, II, III, Lecture Notes in Mathematics, vols 151, 152, 153 (Springer, New York, 1970).Google Scholar
[His84]Hiss, G., Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math. 42 (1984), 408416.CrossRefGoogle Scholar
[Hog82]Hogeweij, G. M. D., Almost classical Lie algebras: I, II, Indag. Math. 44 (1982), 441460.CrossRefGoogle Scholar
[KM11]Kassabov, M. and Matucci, F., Bounding residual finiteness in free groups, Proc. Amer. Math. Soc. 139 (2011), 22812286.CrossRefGoogle Scholar
[LL]Larsen, M. and Lubotzky, A., On linear groups of polynomial normal subgroup growth; the (G2 F4 E8) theorem, in Algebraic groups & arithmetic, Tata Institute of Fundamental Research Studies in Mathematics, eds S. G. Dani and G. Prasad (TIFR, Mumbai), 441–468.Google Scholar
[LMR00]Lubotzky, A., Mozes, Sh. and Raghunathan, M. S., The word and Riemannian metrics on lattices of semisimple groups, Publ. Math. Inst. Hautes Études Sci. 91 (2000), 553.CrossRefGoogle Scholar
[LS03]Lubotzky, A. and Segal, D., Subgroup growth (Birkhäuser, Basel, 2003).CrossRefGoogle Scholar
[MP94]Moy, A. and Prasad, G., Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994), 393408.CrossRefGoogle Scholar
[PR94]Platonov, V. P. and Rapinchuk, A. S., Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139 (Academic Press, Boston, MA, 1994), Translated from the 1991 Russian original by Rachel Rowen.Google Scholar
[Ste68]Steinberg, R. G., Lectures on Chevalley groups (Yale University Press, 1968).Google Scholar