Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T14:33:48.772Z Has data issue: false hasContentIssue false

Periods of automorphic forms: the case of $(\text{GL}_{n+1}\times \text{GL}_{n},\text{GL}_{n})$

Published online by Cambridge University Press:  13 November 2014

Atsushi Ichino
Affiliation:
Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan email [email protected]
Shunsuke Yamana
Affiliation:
Faculty of Mathematics, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Following Jacquet, Lapid and Rogawski, we define a regularized period of an automorphic form on $\text{GL}_{n+1}\times \text{GL}_{n}$ along the diagonal subgroup $\text{GL}_{n}$ and express it in terms of the Rankin–Selberg integral of Jacquet, Piatetski-Shapiro and Shalika. This extends the theory of Rankin–Selberg integrals to all automorphic forms on $\text{GL}_{n+1}\times \text{GL}_{n}$.

Type
Research Article
Copyright
© The Author(s) 2014 

References

Arthur, J., A trace formula for reductive groups I: terms associated to classes in G (ℚ), Duke Math. J. 45 (1978), 911952.Google Scholar
Arthur, J., A trace formula for reductive groups II: applications of a truncation operator, Compositio Math. 40 (1980), 87121.Google Scholar
Arthur, J., The trace formula in invariant form, Ann. of Math. (2) 114 (1981), 174.Google Scholar
Arthur, J., On the inner product of truncated Eisenstein series, Duke Math. J. 49 (1982), 3570.Google Scholar
Arthur, J., A measure on the unipotent variety, Canad. J. Math. 37 (1985), 12371274.Google Scholar
Bernstein, J., P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-archimedean case), in Lie group representations II, Lecture Notes in Mathematics, vol. 1041 (Springer, Berlin, 1984), 50102.Google Scholar
Casselman, W., Extended automorphic forms on the upper half plane, Math. Ann. 296 (1993), 755762.CrossRefGoogle Scholar
Cogdell, J. W. and Piatetski-Shapiro, I. I., Remarks on Rankin-Selberg convolution, in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, 2004), 256278.Google Scholar
Dixmier, J. and Malliavin, P., Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. 102 (1978), 307330.Google Scholar
Franke, J., Harmonic analysis in weighted L 2-spaces, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 181279.CrossRefGoogle Scholar
Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1109.Google Scholar
Gross, B. H. and Prasad, D., On the decomposition of a representation of SOn when restricted to SOn−1, Canad. J. Math. 44 (1992), 9741002.Google Scholar
Harish-Chandra, Discrete series for semi-simple Lie groups II, Acta Math. 116 (1966), 1111.Google Scholar
Ichino, A. and Ikeda, T., On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), 13781425.Google Scholar
Jacquet, H., On the residual spectrum of GL(n), in Lie group representations II, Lecture Notes in Mathematics, vol. 1041 (Springer, Berlin, 1984), 185208.Google Scholar
Jacquet, H., Integral representation of Whittaker functions, in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, 2004), 373419.Google Scholar
Jacquet, H., Archimedean Rankin-Selberg integrals, in Automorphic forms and L-functions II: local aspects, Contemporary Mathematics, vol. 489 (American Mathematical Society, Providence, RI, 2009), 57172.Google Scholar
Jacquet, H. and Chen, N., Positivity of quadratic base change L-functions, Bull. Soc. Math. France 129 (2001), 3390.Google Scholar
Jacquet, H., Lapid, E. and Rogawski, J., Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999), 173240.Google Scholar
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., Automorphic forms on GL(3), I & II, Ann. of Math. (2) 109 (1979), 169258.Google Scholar
Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367464.Google Scholar
Jacquet, H. and Rallis, S., On the Gross-Prasad conjecture for unitary groups, in On certainL-functions, Clay Mathematics Proceedings, vol. 13 (American Mathematical Society, Providence, RI, 2011), 205264.Google Scholar
Jacquet, H. and Shalika, J., Rankin-Selberg convolutions: Archimedean theory, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part I (Ramat Aviv, 1989), Israel Mathematical Conference Proceedings, vol. 2 (Weizmann, Jerusalem, 1990), 125207.Google Scholar
Lapid, E., On Arthur’s asymptotic inner product formula of truncated Eisenstein series, in On certain L-functions, Clay Mathematics Proceedings, vol. 13 (American Mathematical Society, Providence, RI, 2011), 309331.Google Scholar
Lapid, E. and Rogawski, J., Periods of Eisenstein series: the Galois case, Duke Math. J. 120 (2003), 153226.CrossRefGoogle Scholar
Moeglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), 605674.Google Scholar
Moeglin, C. and Waldspurger, J.-L., Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113 (Cambridge University Press, Cambridge, 1995).Google Scholar
Shalika, J., The multiplicity one theorem for GLn, Ann. of Math. (2) 100 (1974), 171193.CrossRefGoogle Scholar
Trèves, F., Topological vector spaces, distributions and kernels (Dover, Mineola, NY, 2006). Unabridged republication of the 1967 original.Google Scholar
Vogan, D., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), 449505.Google Scholar
Waldspurger, J.-L., Cohomologie des espaces de formes automorphes (d’après J. Franke), Astérisque 241 (1997), 139156; Séminaire Bourbaki, 1995/96, exp. no. 809.Google Scholar
Wallach, N., Real reductive groups II, Pure and Applied Mathematics, vol. 132-II (Academic Press, Boston, 1992).Google Scholar
Zhang, W., Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. of Math. (2) 180 (2014), 9711049.Google Scholar
Zhang, W., Automorphic period and the central value of Rankin-Selberg L-function, J. Amer. Math. Soc. 27 (2014), 541612.Google Scholar