Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T12:56:04.917Z Has data issue: false hasContentIssue false

On the computation of torus link homology

Published online by Cambridge University Press:  23 November 2018

Ben Elias
Affiliation:
Department of Mathematics, Fenton Hall, University of Oregon, Eugene, OR 97403, USA email [email protected]
Matthew Hogancamp
Affiliation:
Department of Mathematics, Indiana University, 831 East 3rd St. Bloomington, IN 47405, USA email [email protected]

Abstract

We introduce a new method for computing triply graded link homology, which is particularly well adapted to torus links. Our main application is to the $(n,n)$-torus links, for which we give an exact answer for all $n$. In several cases, our computations verify conjectures of Gorsky et al. relating homology of torus links with Hilbert schemes.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: Department of Mathematics, University of Southern California, 3620 S. Vermont Ave., KAP 104 Los Angeles, CA 90089, USA

References

Abel, M. and Hogancamp, M., Stable homology of torus links via categorified Young symmetrizers II: one-column partitions, Preprint (2015), arXiv:1510.05330.Google Scholar
Bondal, A. I. and Kapranov, M. M., Framed triangulated categories , Mat. Sb. 181 (1990), 669683.Google Scholar
Elias, B. and Hogancamp, M., Categorical diagonalization, Preprint (2017), arXiv:1707.04349.Google Scholar
Elias, B. and Hogancamp, M., Categorical diagonalization of full twists, Preprint (2018), arXiv:1801.00191.Google Scholar
Elias, B. and Krasner, D., Rouquier complexes are functorial over braid cobordisms , Homology Homotopy Appl. 12 (2010), 109146.Google Scholar
Elias, B. and Williamson, G., Soergel calculus, Preprint (2013), arXiv:1309.0865.Google Scholar
Elias, B. and Williamson, G., The Hodge theory of Soergel bimodules , Ann. of Math. (2) 180 (2014), 10891136.Google Scholar
Etingof, P. and Strickland, E., Lectures on quasi-invariants of Coxeter groups and the Cherednik algebra, Preprint (2002), arXiv:0204104.Google Scholar
Gorsky, E., q, t-Catalan numbers and knot homology , in Zeta functions in algebra and geometry, Contemporary Mathematics, vol. 566 (American Mathematical Society, Providence, RI, 2012), 213232.Google Scholar
Gorsky, E. and Neguț, A., Refined knot invariants and Hilbert schemes , J. Math. Pures Appl. (9) 104 (2015), 403435.Google Scholar
Gorsky, E., Neguț, A. and Rasmussen, J., Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology, Preprint (2016), arXiv:1608.07308.Google Scholar
Gorsky, E., Oblomkov, A. and Rasmussen, J., On stable Khovanov homology of torus knots , Exp. Math. 22 (2013), 265281.Google Scholar
Gorsky, E., Oblomkov, A., Rasmussen, J. and Shende, V., Torus knots and the rational DAHA , Duke Math. J. 163 (2014), 27092794.Google Scholar
Hogancamp, M., Khovanov–Rozansky homology and higher Catalan sequenes, Preprint (2017), arXiv:1704.01562.Google Scholar
Hogancamp, M., Categorified Young symmetrizers and stable homology of torus links , Geom. Topol. 22 (2018), 29433002.Google Scholar
Jones, V. F. R., The annular structure of subfactors , in Essays on geometry and related topics, Vol. 1, 2, Monographies de l’Enseignement Mathématique, vol. 38 (Enseignement Math., Geneva, 2001), 401463.Google Scholar
Khovanov, M., Triply-graded link homology and Hochschild homology of Soergel bimodules , Internat. J. Math. 18 (2007), 869885.Google Scholar
Khovanov, M. and Rozansky, L., Matrix factorizations and link homology , Fund. Math. 199 (2008), 191.Google Scholar
Khovanov, M. and Thomas, R., Braid cobordisms, triangulated categories, and flag varieties , Homology Homotopy Appl. 9 (2007), 1994.Google Scholar
Mellit, A., Homology of torus knots, Preprint (2017), arXiv:1704.07630.Google Scholar
Rasmussen, J., Some differentials on Khovanov–Rozansky homology , Geom. Topol. 19 (2015), 30313104.Google Scholar
Rouquier, R., Categorification of the braid groups, Preprint (2004), arXiv:0409593.Google Scholar
Soergel, W., Kazhdan–Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen , J. Inst. Math. Jussieu 6 (2007), 501525.Google Scholar
Wenzl, H., On sequences of projections , C. R. Math. Acad. Sci. Soc. R. Can. 9 (1987), 59.Google Scholar