Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:12:01.032Z Has data issue: false hasContentIssue false

On the arithmetic fundamental lemma in the minuscule case

Published online by Cambridge University Press:  04 July 2013

Michael Rapoport
Affiliation:
Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany email [email protected]
Ulrich Terstiege
Affiliation:
Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Campus Essen, Ellernstraße 29, 45326 Essen, Germany email [email protected]
Wei Zhang
Affiliation:
Department of Mathematics, Columbia University, New York, NY 10027, USA email [email protected]

Abstract

The arithmetic fundamental lemma conjecture of the third author connects the derivative of an orbital integral on a symmetric space with an intersection number on a formal moduli space of $p$-divisible groups of Picard type. It arises in the relative trace formula approach to the arithmetic Gan–Gross–Prasad conjecture. We prove this conjecture in the minuscule case.

Type
Research Article
Copyright
© The Author(s) 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizenbud, A., Gourevitch, D., Rallis, S. and Schiffmann, G., Multiplicity one theorems, Ann. of Math. (2) 172 (2010), 14071434.CrossRefGoogle Scholar
Bültel, O. and Wedhorn, T., Congruence relations for Shimura varieties associated to some unitary groups, J. Inst. Math. Jussieu 5 (2006), 229261.CrossRefGoogle Scholar
Carter, R., Finite groups of Lie type: conjugacy classes and complex characters, Pure and Applied Mathematics (Wiley, New York, NY, 1985).Google Scholar
Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103161.Google Scholar
Goren, E., Lectures on Hilbert Modular Varieties and Modular Forms, CRM Monograph Series, vol. 14 (American Mathematical Society, Providence, RI, 2002).Google Scholar
He, X. and Nie, S., Minimal length elements of finite Coxeter groups, Duke Math. J. 161 (2012), 29452967.Google Scholar
Jacquet, H. and Rallis, S., On the Gross-Prasad conjecture for the unitary group in three variables, in On certain L-functions, Clay Mathematics Proceedings, vol. 13 (American Mathematical Society, Providence, RI, 2011), 205264.Google Scholar
Kudla, S. and Rapoport, M., Special cycles on unitary Shimura varieties, I. Unramified local theory, Invent. Math. 184 (2011), 629682.Google Scholar
Kudla, S. and Rapoport, M., Special cycles on unitary Shimura varieties, II. Global theory, J. Reine Angew. Math., doi:10.1515/crelle-2012-0121.Google Scholar
Lusztig, G., Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976), 101159.CrossRefGoogle Scholar
Lusztig, G., On the Green polynomials of classical groups, Proc. Lond. Math. Soc. (3) 33 (1976), 443475.Google Scholar
Lusztig, G., From conjugacy classes in the Weyl group to unipotent classes, Represent. Theory 15 (2011), 494530.Google Scholar
Rallis, S. and Schiffmann, G., Multiplicity one conjectures, Preprint (2007), math.RT/0705.2168.Google Scholar
Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
Terstiege, U., Intersections of arithmetic Hirzebruch-Zagier cycles, Math. Ann. 349 (2011), 161213.Google Scholar
Terstiege, U., Intersections of special cycles on the Shimura variety for GU(1,2), J. Reine Angew. Math., doi:10.1515/crelle-2011-0006.Google Scholar
Vollaard, I., The supersingular locus of the Shimura variety for $GU(1, s)$, Canad. J. Math. 62 (2010), 668720.CrossRefGoogle Scholar
Vollaard, I. and Wedhorn, T., The supersingular locus of the Shimura variety for$GU(1, n- 1)$, II., Invent. Math. 184 (2011), 591627.Google Scholar
Yun, Z., The fundamental lemma of Jacquet and Rallis. Appendix by Julia Gordon, Duke Math. J. 156 (2011), 167227.Google Scholar
Zhang, W., On arithmetic fundamental lemmas, Invent. Math. 188 (2012), 197252.Google Scholar
Zink, T., Windows for displays of $p$-divisible groups, in Moduli of abelian varieties, Texel Island, 1999, Progress in Mathematics, vol. 195 (Birkhäuser, Basel, 2001), 491518.Google Scholar
Zink, T., The display of a formal $p$-divisible group, Cohomologies p-adiques et applications arithmétiques, I, Astérisque 278 (2002), 127248.Google Scholar